Bridging the Gaps between Many-task
Computing and Supercomputers

ZHAO ZHANG

July 11, 2011

Contents

1 Introduction

2 Related Work
2.1 Job Dispatching
2.2 Load Balancing
2.3 Data Management, .
2.4 System Resilience

3 Design
3.1 Overview.
3.2 Dispatcher
3.3 DataManager Lo
34 Worker

4 Design Alternatives
4.1 Job Scheduling
4.2 Load Balancing oo
4.3 Data Management

5 Performance Evaluation
5.1 Scheduling without Data
5.2 Scheduling with Data
5.3 Data Management Overhead Analysis
5.4 Load Balancing oo

6 Application Experiments
7 Conclusion
8 Future Work

9 Acknowledgment

13
13
13
14

16
16
19
21
22

25

27

29

31

Abstract

Many Task Computing, an emerging programming paradigm on supercom-
puters, embraces many applications in such domains as biology, economics,
and statistics, as well as data intensive computations and uncertainty quan-
tification. Its high inter-task parallelism and intense data processing features
place new challenges on the existing hardware-software stack on supercom-
puters. Those new challenges include resource provisioning, job scheduling,
load balancing, data management, and resiliency. In this paper, we iden-
tify Many-Task Computing middleware gaps between the applications and
supercomputer’s hardware-software stack by examining their characteristics.
Based on this analysis, we propose AME, an Anyscale MTC Engine with a
special focus on scalability. We describe the AME framework and present
performance results for both synthetic benchmarks and real applications.
Our results show that AME is a highly scalable MTC engine on petascale
machines, and a strong candidate for exascale machines and beyond.

Chapter 1

Introduction

Many-Task applications [20] involve the automatic execution of a number of
other programs, where job dependencies are resolved by POSIX-compatible
files. Such applications usually feature high inter-task parallelism, and in-
voke more than one existing program. The file flow patterns vary among
applications and can be depicted by file flow graphs. These patterns have
been well studied [19, 18].

Many current supercomputers have some common features. From a hard-
ware perspective, there are a large number of multi-core compute nodes that
have ram disks but no local disks, one or several low-latency networks, and
a shared file system. At the operating system level, the compute nodes
might or might not have a full Linux kernel and have POSIX-compatible
access to the shared file system. As supercomputers are administrated by
various institutions, they have different scheduling policies. The granularity
of scheduling, which can be interpreted as the smallest number of compute
nodes that users can request, differs among machines. A specific example
is the IBM BG/P at Argonne, which has 40960 quad-core PPC 450 com-
pute nodes, each with a shared 2 GB memory. The BG/P has 5 networks:
one low-latency high-bandwidth 3D torus network for message passing, one
highly scalable collective tree network for data collection, one global inter-
rupt network for low latency barrier and interupts, one control network that
could access the RAM of all compute nodes and 10 nodes, and an Ether-
net network that interconnects 10 servers, IO nodes, and login nodes. The
ANL BG/P has a GPFS configuration of 128 file servers yielding 3072 TB
of storage. The scheduling granularity is 64 compute nodes, because of the
hardware layout. (The prior BG/L system had a granularity of 32 nodes.)

Naively applying Many-Task application to the existing supercomputer
hardware-software stack will result a series of problems, such as low machine
utilization, low scalability, overload of file system, and more. Examining

the characteristics of Many-Task application and the physical layout of the
supercomputers, we identify the following gaps from a distributed system
perspective:

e Resource Provisioning: A first gap lies between the static resource pro-
visioning scheme and the variable running time of the jobs. Well known
job schedulers such as PBS features a static scheduling scheme, where
it is not feasible to release part of computing resources while the job
is not complete yet. A second gap is between the scheduling granu-
larity and the potential/eventual lack of jobs ready to be run. IBM
BG/P and BG/L have a scheduling granularity at 64 compute nodes
and 32 compute nodes respectively. As we have seen, at some stage of
the application, the number of jobs will be far less than the scheduling
granularity, leading to low utilization at that stage.

e Job Dispatching: Most of the existing supercomputer schedulers suffer
overhead at the minute level when starting/terminating allocations. In
the case of jobs that run for seconds, this dispatching overhead will
dominate the time needed to run the application.

e Load Balancing: The existing supercomputer hardware-software stack
does not provide load balancing functionality for the Many-Task Com-
puting paradigm, while such applications requires this feature in order
to obtain high machine utilization during the execution.

e Data management: The gap in this category is a key gap between
Many-Task applications and supercomputer hardware. The /O sys-
tem, including the shared file system, is not capable of handling the
large number of metadata operation requests from a Many-Task appli-
cation.

e Resiliency: The lacking of resiliency mechanism on existing parallel
programming language, such as MPI, also places a challenge for Many-
Task applications. Various failures may occur when a Many-Task ap-
plication is running. Hardware failures and operating system failures
are not recoverable at the Many-Task Computing engine level. When
those failures happen, the obstacles to recovery are identifying finished
jobs, inferring the job dependencies of the unreturned and failed jobs,
and re-establishing the states of various services of the runtime system.

In some cases, Job Dispaching and Load Balancing are interlevead in one
schduler. A centralized job dispatcher that sends the longest job to the next

available compute node also balances the load among the compute nodes in
the mean time of dispatching. In the following discussion, the term dispatcher
describes the the schdulers’ role in the job dispatching scenario, while the
term load balancer my refer to the schdulers’ load balancing role or some
independent load balancing service. In this paper, we address three categories
of the above gaps: Job Scheduling, Load Balancing, and Data Management.

e To address scheduling gaps, we take advantage of previous lessons from
Falkon [13] regarding multi-level scheduling. In addition, we evaluate
the idea of centralized dispatching vs. decentralized dispatching.

e To address the load balancing issue, we have two design alternatives.
One of them is a centralized dispatcher with a pull model, the other is
a decentralized dispatcher with a push model plus work-stealing.

e For the data management gap, we have classified data according to their
usage pattern in [20]. They are common input, unique input, output
and intermediate data. In this paper, we focus on the intermediate data
handling scheme. We present a distributed memory coherence protocol
that resolves job dependencies at runtime. Along with a distributed
hash table (DHT) based design, this particular management scheme
features high scalability. We also demonstrate how to use this scheme as
a primitive to benefit the file flow patterns of Many-Task applications.

The rest of the paper is organized as following: Part II discusses both
previous works in this domain and related works with intriguing ideas from
other domains. In Part III, we demonstrate the high level design of AME
and the communication among modules of the system. We show both the
benchmark design and performance results with explanation in Part IV. In
Part V, two extreme cases of file flow patterns of Many-Task applications are
examined. Conclusion are drawn in Part VI, and future work is envisioned
in Part VII.

Chapter 2
Related Work

2.1 Job Dispatching

Regardless of the programming paradigm, the program source code needs to
be translated to some machine code that could be executed workers(or CPU).
We look around on how well known programming language or library dipatch
jobs to workers in the Parallel and Distributed Programming context.

MPI leaves this function to programmers. It is a common case that,
for embarassingly parallel applications, MPI programs include the code for
all the tasks that may be run, and each compute node does its part of the
work which is identified by the worker’s rank. This scheme is the most
scalable of the ones we covered, but it requires the compute nodes to load
redundant information. Every compute node needs to load the compiled
binary, and finds out its own task. Pegasus/Condor [8] uses a centralized
job dispatcher, the submit host, which keeps a shadow of every single job.
It tracks lifetime state change of the jobs. Thus its scalability is limited
to the capacity of the submit host. Also, it consumes a lot more memory
than the MPI case. Falkon [13] explores a 3-tier architecture: a first tier
submit host, a group of second tier dispatchers, and a group of third tier
workers. Nevertheless, Falkon’s job view is the same as Condor, and limits
the scalability of short jobs (O(1) s). AME’s dispatcher takes advantage of
Falkon’s 3-tier design, and changes the job view from a single job to a text
file at the first layer. AME’s dispatcher does not monitor job status, which
results in higher scalability than Falkon; it is a tradeoff between scalability
and the detailed job status monitoring.

2.2 Load Balancing

For those embarassingly parallel applications, the running time of jobs may
vary. Load Balancing is necessary for the run to achieve optimal utilization.

Supercomputers do support for High-Throughput Computing applica-
tions, such as IBM BG series’ HTC mode and Cray XE6’s Cluster-Compatibility
Mode. Thus supercomputers provide load balancing for HTC computation.
But MTC applications’ huge amount of jobs could go beyond the load balanc-
ing capability(memory, CPU) of the scheulers and load balancers of existing
supercomputers. The MPI standard does not provide such functionality;
ADLB [12] (and other higher level schemes) aims to solve this bottleneck
in the MPI scenario. In the parallel programming languages Cilk, and Par-
log [6], researchers have put effort in the work-stealing algorithm that tries
to remedy the starving situation that may occur. But none of the existing
work-stealing algorithms has ever been proved to scale up to 100,000 cores.
AME wants to address this problem via a local stealing scheme, where each
compute node cannot access every other compute node in the allocation.
This is because some of the supercomputers’ communication networks are in
torus topology(IBM BlueGene Series, Cray XEG6), which features a hop-by-
hop transmission network, so by limiting the stealing scope, we can avoid
high-latency round-trips. Also, this can balance the stealing workload across
all the compute nodes in the allocation.

2.3 Data Management

Data Management is a key component of many parallel and distributed com-
puting programming systems.

Related work on data management ranges from the operating system to
distributed computing middleware: ZOID [9] works with the computer node
OS kernel to accelerate the 10 throughput from computing resources to per-
sistent storage. GPFS [15], LUSTRE [7]and PVFS [5] aim to provide scalable
global persistent storage for supercomputers. GridFTP [2], MosaStore [1],
and Chirp [16] provide data management primitives on grids and clusters
at workflow runtime. ROMIO [17] is designed as the I/O support for MPI,
which can also be viewed as the Data Management Module. MPI also leaves
this feature to programmers. In most MapReduce scenarios, the data to be
processed are assumed to reside on the compute nodes. HDFS [4] (Hadoop
Distributed File System) places three replicas of each data chunk over the
compute nodes. Other work tries to isolate the data storage and processing.
HDFS’s scalability is mainly limited by its single management node archi-

tecture. Results show it scales up to the level of 1,000 compute nodes, but
not more. AME’s data management system is designed as a MTC runtime
support on supercomputers. It differs from the persistent storage by the life-
time of the data it manages. With the DHT based design, theoretically, it
could scale up to any number of compute nodes.

2.4 System Resilience

System Resilience is considered quite differently among different parallel and
distributed computing systems.

MPI does not provide any resilience features: when an MPI program
fails, the user needs to restart the run. Condor uses a checkpointing scheme
for resilience. MapReduce treats system failure as a norm rather than an
occasional accident, thus it duplicates jobs as it takes node failure as a normal
situation rather than an exception in the commodity clusters. We are still
working on how AME should address this issue.

Chapter 3

Design

3.1 Overview

The AME system tackles three categories of gaps: job scheduling, load bal-
ancing, and data management. It consists of five modules: a provisioner, a
submitter, a group of decentralized dispatchers, a group of DHT-based Data
Lookup Services, and one worker per compute node. The provisioner is in
charge of resource requests and releases. Currently, it is using a static re-
source provisioning strategy. The submitter is the only central point of the
AME system. A submitter submits workflow descriptions to a number of dis-
patchers. The decentralized dispatcher takes the responsibility of uniformly
dispatching a number of jobs to all compute nodes. The DHT-based data lo-
cation lookup service implements a distributed memory coherence protocol,
and provides file state and location lookup interfaces. In addition to running
a job, the worker is capable of querying and updating the state and location
of data, and stealing jobs from neighbors. Figure 3.1 shows the overview of
the whole system.

The submitter runs on the login node. We select some of the compute
nodes as the dispatchers, and the workers run on compute nodes. The sub-
mitter communicates with the job dispatcher via POSIX files on the shared
file system. The submitter feeds the dispatchers with files containing job de-
scriptions. The communication between dispatchers and the workers is over
the interconnect network. Each dispatcher only has a local view of the jobs in
its allocation. Communications among workers are over the interconnect net-
work for the purpose of file transfer and load balancing. All communications
use TCP/IP over the interconnect network.

By employing the idea of a DHT-based distributed memory coherence
protocol, AME supports the feature of out-of-order execution. The submitter

/ Interconnect Network \

Submitter Dispatcher Worker

[Job Partition [Queue] [Queue][Worker]

A
[Job Partition] :

—

2/

Data Manager Worker

[DHT J

Memory Coherence
Protocol Server

Y
[Queue J[Worker J

=

Figure 3.1: Overview of AME

submit alljobs regardless of data availability. Job dependencies and coher-
ence are resolved by the protocol, thus preserving the execution order of the
workflow. Another feature of the AME system is that the system utilization
can scale up linearly in the unit of a pset (one I/O node with 64 compute
nodes under its control). As the number of files increases proportionally
with the number of jobs, we will have more distributed memory coherence
protocol (DMCP) servers. Assuming we have a fixed ratio of DMCP servers
to compute nodes, the number of file records that each server keeps remains
the same. Thus the query and update workload does not increase with the
number of jobs. In an ideal case where all jobs run for an identical time, the
utilization of each pset remains constant as the system scales and number of
jobs increase.

3.2 Dispatcher

The AME dispatcher has a 3-tier architecture. At the highest level, the
submitter is a central point, it bundles the available jobs and sends them to
the second level dispatchers proportionally to the number of workers. The

second level dispatchers send jobs to the workers in its range also in a uniform
way. It keeps a record in memory for every job. Before a job is sent to worker,
the second level dispatcher puts a tag in the job in order to mark the source
of the job. Thus when a job is stolen across tree networks, the second level
dispatcher could know where to route the result.

In a general view, AME uses supercomputers’ interconnect network for
inter compute nodes communication. It divides the allocation into serveral
partitions. Omne of the compute node in each partition works as a second
level dispatcher. Another compute node in each partition works as a data
manager, while the remaining compute nodes work as workers.

3.3 Data Manager

3.3.1 Distributed Memory Coherence Protocol

We introduce this distributed memory coherence protocol (DMCP) to record
file state transition. The DMCP protocol is implemented at two places, the
worker and the DHT-based data location lookup services.

In a worker, the state transition logic tracks the state change of every file
that is related to the jobs on the worker. There are four states in this protocol.
For each file, its state is one of the following: INVALID, LOCAL, SHARED,
REMOTE. INVALID indicates that this file is not available anywhere in the
system, and it is expected to be generated by some job. LOCAL means
this file is available on the local disk or the memory of this compute node.
SHARED files are in shared file system. REMOTE files are available on some
other compute node. There is a state transition from INVALID to REMOTE
when an intermediate file is produced and its state is updated. Upon an
update from INVALID to REMOTE, the protocol initiates a broadcast. It
broadcasts the file location to all workers that have requested this file. After
the intermediate file is copied from the producer to consumer, its state is
update from REMOTE to LOCAL. State transition from Local to Shared
only happens when an output file is written from local disk back to shared
file system. As Many-Task applications have the multiple-read single-write
pattern, there is no further state update once an intermediate file becomes
LOCAL to the worker. Also, there is no more state transition to the output
files that are moved to shared file system with states updated. Figure 3.2
shows the state transition of DMCP on compute nodes. Figure 3.3

The DMCP on the DHT-based lookup service have three states. IN-
VALID, VALID, SHARED. The state INVALID indicates the file in not
generated yet. The state VALID maps to the REMOTE and LOCAL states

Query Query

Update
start — Remote
Update
Copy
Copy
Query Query

Figure 3.2: State Transition of Distributed Memory Coherence Protocol on
Workers

in the implementation on workers, it does not track the location of the file in
the interconnect network. The SHARED state shows that the data is copied
to global file system. When an intermediate or output file is produced on
workers, the state of the file is transitted from INVALID to VALID. Once an
output file is copied from worker to global file system, the state of the file
moves from VALID to SHARED.

The DMCP is used but not limited for POSIX-compatible file state tran-
sition tracking. It could also be used to track state change in in-memory
data in other HPC programming paradigm.

3.3.2 DHT Based Data Lookup Service

Each of the Data Lookup Server has a in-memory hash table. The key for
the hash table is a file name as a string. Each file name is unique in the
namespace of one execution of Many-Task application. The associated value
stores the status of the file, the location of the file, and an address list. The
address list keeps track of the workers that request this file.

10

Query Query

Update
start —

Figure 3.3: State Transition of Distributed Memory Coherence Protocol on
Workers

We use a static approach for the DHT design, which is also known as
consistent hash. Assuming there are no DHT servers coming and going during
execution of one workflow, the information on all related files is distributed
to all Data Lookup Servers by a hash function. The following equations are
used to compute the target server for a given file:

Server_Rank = The rank of the server
Server_Num: The total number of servers
File_Name: The string of a file name
Hash_Value: The return value of

the hash function

Hash_Value = Hash(File_Name)
Server_Rank = Hash_Value % Server_Num

In this way, the records are uniformly distributed on all Data Lookup
Servers. And a worker uses the same way to find out which server to query
for a given file.

3.3.3 Hashed Output Directory

To reduce the overhead produced by the Many-Task applications on the
global file systems, we adopt the approach described in our previous pa-
per [20]. A pre-created hashed output directory can significantly reduce the
metadata server overhead by avoiding the locking mechanism in shared file
systems.

11

3.4 Worker

The worker’s main function is to execute jobs. In addition, it also has func-
tions to enable job scheduling, work-stealing, etc. It keeps several data struc-
tures in memory: a queue that stores jobs received from the dispatcher, a
ready-queue that stores all jobs that are ready to run, a result queue that
keeps the results for finished jobs, a job hash map with job ID as key and job
description as value to store jobs that have unavailable data, and a reverse
hash map with file name as key and job ID as value. In the job hash map,
there are also a pair of values that indicate the number of available input
files and the total input files.

The DMCP protocol is implemented as follows: By looking at local data
information, a file is either marked a LOCAL or INVALID. If a file is marked
as INVALID, the worker will initiate a query to the Data Lookup Services.
The services could return two results, either INVALID or REMOTE. In the
case of a worker receiving INVALID for an input file, the Data Lookup Service
links the IP address with the file, and worker will continue to check on the
next input file. While if the worker receives the REMOTE message, the
worker will add one to the count of available input files for the job. When
a worker receives a broadcast message from the Data Lookup Services, it
means some file has been updated to REMOTE. The worker will add one to
the count of available input files of the job, and if the job is ready to run,
the worker will launch a thread to execute it. When the job is executed,
the worker will query the Data Lookup Service again to get the location
of the file, then copy it from remote site, and the state of that file will be
changed from REMOTE to LOCAL. After the execution, the worker will
mark the output file as LOCAL. If the file is an output file, it will be moved
from worker’s RAM to global share file system, and the state of the file will
changed from LOCAL to SHARED.

The worker has 10 active threads. The fetcher fetches jobs from dis-
patcher, and pushes them into the job queue. The committer pops results
from the result queue and send them to scheduler. The thief steals jobs from
the ready queues of its neighbors. The wvictim accepts the thief’s requests.
The job mover checks the availability of input files of the jobs in the job
queue. If all input files are ready, the job is moved to the ready queue. Oth-
erwise, the job is pushed to the job map. The receiver accepts broadcast
messages from DHT servers. Upon every received message, it first finds the
corresponding job ID in the reverse hash map, then adds one to the available
input file count in the job map. If the available input file count equals to the
total input file count, then the job is ready, and moved to ready queue. The
other 4 threads are used to run the jobs.

12

Chapter 4

Design Alternatives

4.1 Job Scheduling

Centralized vsDecentralized: In a centralized design, the submitter keeps
states of jobs (it monitors the state transition of jobs.) It requires some
amount of memory to store the return state, queuing time, running time,
etc. In a decentralized design, the submitter only keeps the number of jobs
for each dispatcher, initializes the dispatchers, and waits until all dispatchers
return. It is easier for a centralized submitter to find out the status of jobs,
and to rerun jobs that have failed or not returned. Removing the manage-
ment logic from the submitter has two advantages: it relieves the submitter
from using too much memory, and it places a lighter load on the submitter.
Thus, it could enhance scalability.

4.2 Load Balancing

4.2.1 Push vs. Pull

In a Pull Model, dispatchers hold jobs in their queues, and workers pull jobs
from them when they are idle. In a Push Model, the dispatcher initialize the
communication to workers and pushes a job to a worker if it is idle. One
limit of this algorithm is the central placed job load balancer, As Figure 5.3
shows, the centralized load balancer(dispatcher) can not linearly scale up
with 64-second-long jobs. Even if the jobs are long enough to achieve high
efficiency, the capacity of the centralized Scheduler will be limited by the
CPU and the Memory of the scheduler.

The time-to-solution of a Push Model with known job duration is no worse
than 1.5x of the optimal solution [11]. The Push model, in this design, pushes

13

all jobs to all available workers as uniformly as it can, as we are assuming
the job dependencies can be resolved by the DMCP protocol. There is a
good chance that a starvation situation occurs, where some of the workers
are busy running with extra jobs are queued, while other workers are idle.
To remedy this problem, we introduce the work-stealing algorithm.

4.2.2 Global Stealing vs. Local Stealing

A stealing scheme where each worker could steal from any other worker in the
allocation, called Global Stealing, has been demonstrated [6]. Local Stealing
is when each worker can only access part of the other workers’ work. For
example, a worker might only steal jobs from its neighbors. The latter scheme
has a chance to incur a hot-spot situation, where a worker has a lot of jobs
in the queue, while all its neighbors are busyand other, more-remote workers
are idle. Here, no other workers would steal jobs from the hot-spot.

4.3 Data Management

4.3.1 Data Aware Scheduling vs. Distributed Coher-
ence Protocol

Falkon has a data-aware scheduling feature [14]. Instead of moving the data
to jobs, it route the jobs to the workers who have the data. The advantage
of this scheme is that, for large data, which is more expensive to move than a
job, it will lower the system overhead. It also places some challenges on the
submitter, one of which is memory consumption. Memory limitations will
limit the scalability of the whole system. In order to avoid the disadvantages
of Data Aware Scheduling and to avoid a centralized point, the Distributed
Coherence Protocol could be used. Each server keeps information about a
certain part of the data, distributed by a hash function. When a worker
queries or updates the state of a file, it could use the same hash function to
find out the corresponding server in at most O(1) time.

4.3.2 Location Lookup vs. Data Store

To support intermediate data caching, either we could use a location lookup
to find out where the data is, then move it in a peer-to-peer style, or we could
build an intermediate file system on-the-fly. A location lookup service would
have a smaller amount of data movement as it only would need to copy from
the source to destination, while the data store would double the amount of

14

data movement, with one copy needed from the source to the data store, and
another copy needed from the data store to the destination. Also, the data
store scheme has to maintain the metadata consistency if it is distributed.

15

Chapter 5

Performance Evaluation

Our testbed is the IBM Blue Gene/P deployment at Argonne National Lab-
oratory. It has 40960 quad-core compute nodes, each with 2 GB memory. A
pset is a group of 64 compute nodes and one IO node corresponding to this
group of nodes. Within the pset, the IO node and compute nodes commu-
nicate via the tree network. Each pset has a private IP space, so compute
nodes can not communicate across psets via the tree network. A rack con-
sists of 16 psets, thus 1024 compute nodes or 4096 cores. Compute nodes
can reach each other via the 3D torus network, which is a global network for
compute nodes in the same allocation.

5.1 Scheduling without Data

To show the AME dispatcher’s performance, we use a suite of synthetic jobs.
Each job runs for the same length. The lengths are 0 seconds, 1 seconds,
4 seconds, 16 seconds, 64 seconds. And we run 16 jobs on each core. Fig-
ures 5.1 and 5.2 show the different dispatching rates for the Centralized and
Decentralized scheduler. The dispatching rate of the centralized scheduler in-
creases linearly up to 8 psets, that is 512 compute nodes (2048 cores). From
there, the increase slows down significantly due to the dispatcher’s limited
ability to manage traffic over sockets. For the decentralized scheduling case,
the performance keeps increasing linearly up to 8192 compute nodes (32768
cores). The reason for this linear scalability is that the submitter partitions
the job description file and only issues control traffic to the dispatchers, in-
stead of sending jobs to them. The dispatch rate will stop increasing linearly
at some point, either because the system hits the bottleneck of GPFS read
performance, or the bottleneck of socket management.

16

JOBS/SECOND

JOBS/SECOND

1600

1,442.73

—&—szleep
—B—szleep 1
—#—sleep 4
slkeap 16
—k—sleep 64

—&—sleep 256

255 512 1024 2048 4096 5192
SCALE (Number of Cores)

Figure 5.1: Dispatching Rate of Centralized Scheduler

16000
14,116.53
14000
12000
10000 —&—sleepl
3000 7,046, —h—skepl
—+—sleep 4
60D0 sleap 16
3 —— sleap §4
4000 Sl —8—zleep 256

1,817.42

B99.73

2000
226.05 443.53

258 B2 1024 2048 4096 3182 18334
SCALE (Mumber of Cores)

Figure 5.2: Dispatching Rate of Decentralized Scheduler

17

Figure 5.3 and 5.4 shows the workload efficiency in both of the centralized
and decentralized schedulers. The efficiency is computed as

job_length x jobs_per_core x num_cores

ef ficiency = (5.1)

time_to_solution *x num_cores
We can tell from Figure 5.3 and 5.4 how long should the job be in order to
achieve certain efficiency without concern of data. For the case of 2 racks,
which is 2048 compute nodes (8192 cores), with the centralized scheduler,
the job length needs to be longer than 16 seconds to achieve the efficiency
of 90%. While in the decentralized case, the job length could be at least 4
second long to achieve 90% efficiency, which allows domain scientists more
flexibility of job length when they design their workflows on supercomputers.

12

0.8

-
% —m—zlesp 1
w
= 06 —#—szleap 4
E sleep 16
L

0.4 —k—sleep 64

—a—sleep 256

02

256 512 1024 2048 4096 g192
SCALE (Number of Cores)

Figure 5.3: Efficiency of Centralized Scheduler

18

1.2

r
4
4
4
-
-

: 2

-
(]
Z O——= - O— B—— P
% 0.6 —+—zleep 4
E sleep 16
w

0.4 —a— sleep 64

—a—sleep 256
0.2
0
258 512 1024 2043 4096 8182 16384

SCALE (Mumnberof Cores)

Figure 5.4: Efficiency of Decentralized Scheduler

5.2 Scheduling with Data

In the below tests, we use the same setting as the test suite in the above
section with only one difference on job dependency. Among the 16 jobs each
core receives, we add a job dependency between a pair of jobs, thus we have
eight pair of jobs. The first job of each pair will run for the same job length,
and output a file of 10 bytes. The second job of each pair of take the file from
previous step as an input file, then runs for the same job length. We use the
decentralized scheduler with the DHT-based DMCP services to conduct the
tests.

Figure 5.5 shows the time to solution of the designed tests at various
scale. Though some overhead is introduced by the intermediate data han-
dling scheme, it remains almost constant as the scale goes up thanks to the
consistent hashing scheme as shown by Figure 5.6. One thing to note is
that the intermediate data management overhead decrease as the job length
increases, this is because, longer running job will release the DMCP servers
from traffic contension.

To show the impact of file size variation in the AME system, we select
file size from 1 KB, 1 MB to 10 MB. The job length is set to 16 seconds,
and each core runs 8 jobs. And there are 4 rounds of data transfer involved
in the test. As the available memory on each compute node is no more than
600 MB, in this workload, each compute node has 16 cached files that are
produced by its 4 cores, and another 16 files transferred from other compute
nodes, with a total size of 320 MB. The ideal time-to-solution of this test

19

10000

1000 dr=— 2= == == == —
)
g —a—sleep
§ 100 > -‘ —B—sleep 1
2 H—_ — — L e seeps
= sleep 16
—a—sleep 64
10
1
258 512 1024 2043 4096 8182
SCALE (Numberof Cores)
Figure 5.5: Time to Solution with Intermediate Data
70
&0
50
0]
g A0 —a—sleep
@ —B—sleep 1
E 30 —4—szleep 4
i / sleep 16
20 » ais —&—sleap 64
10
o
256 512 1024 2048 4096 5192

SCALE (Number of Cores)

Figure 5.6: Overhead Introduced by Intermediate Data Handling Scheme

20

154

152 —

150 —

148

146

144

142
140
138
136
134
256 512

1024 2048 4096 8192

Time-to-solution (seconds)

Scale (Number of Cores)

Figure 5.7: File Size Impact on Time-to-solution

should be 128 seconds. The overhead comes from two sources: job scheduling
and intermediate data management. We see two trends in Figure 5.7: One is
that within the same scale, the larger file size places more overhead, but the
overhead is not significant. The other trend is that with the same size, larger
scale places larger overhead. The overhead comes from the file transfer in
the torus network, as it is a hop by hop transmission network, larger scale
requires more hops to transfer the data. From 256 cores to 8192 cores, the
overhead for 4 rounds of data transfer is ~8 seconds.

5.3 Data Management Overhead Analysis

The overhead of intermediate data management comes from four potential
sources: torus network congestion, Data Location Lookup Service queuing,
hash table synchronization in the Data Location Lookup Service, and the
CPU-saturated OS. The workers use two operations to access the Data Loca-
tion Lookup Service. The first one is to query the state of some intermediate
data. The other is to update the state of a piece of data. The first round of
traffic is all workers querying intermediate data that has not yet been gener-
ated. The next eight rounds of operations are update operations. When the
workers finish the jobs, they update the records of the corresponding data.
Upon updates of the records, the Data Location Lookup Service broadcasts
the data location to the workers who queried it. Then comes the next eight
rounds of query operations to look up the locations of intermediate data.

21

Query- Query | Update- | Update
Queuing Queu-
ing
Average | 144.31 0.30 245 ms | 0.36
ms ms ms
Stddev 14.24 ms | 7.15 0.085 0.14
ms ms ms

Table 5.1: Statistics of Data Location Lookup Service

Note that for each piece of data, a worker has two chances to determine its
location: through the broadcast from the Data Location Lookup Service, or
from the results of a second round query. This ensures that workers can find
the correct location of data that is needed by a stolen job. In this case, there
is no work-stealing involved, so the data location is broadcast to workers.
Table 5.1 shows the queuing time and processing time respectively at the
Data Location Lookup Service side. We can tell that queuing and processing
at server side is not a major source of overhead. The queuing time for query
takes longer because the query traffic is congested when the workload starts.
At the worker side, as shown in Figure 5.8, the average time needed for a
query is 148.35 ms (of which 144.31 ms is the queuing time), while the average
update operation takes 3.05 ms (of which 2.45 ms is the queuing time). The
query operation takes longer due to the queuing at Data Location Lookup
Service side. Upon receiving the intermediate data location, the workers will
initiate transfers to the remote peer to get the data. As Figure 5.8 shows,
the data transfer takes 0.2 seconds on average, with standard deviation of
0.24 seconds. The latency comes from the CPU-saturated OS. Comparing
between the rounds of data transfer, latter rounds are spread across a longer
range of time, with a lower workload on the CPU, and thus lower data
transfer latency. In the tests involving data, there are 8 threads in a worker
running actively on a quad-core power CPU. Shorter jobs put a heavier load
on thread switching on the Power CPU, thus producing a larger overhead.

5.4 Load Balancing

We choose the set of 15344 DOCKG6 jobs in [3] as our test sample to show
the load balancing performance of AME. We simulated this load balancing
feature, and compare the time to solution of the same workload among three
algorithms: centralized dispatcher+FIFO, decentralized dispatcher+PUSH,

22

18

16

14

12 +

#query

transfer

Time (minutes)

08 T

0.6 - M update

.t = e TV

Time Stamp

Figure 5.8: End-End Operation Time from Worker Side

and decentralized dispatcher+PUSH+work-stealing. The same workload
runs at multiple scales to show the scaling performance of all three algo-
rithms. Figure 5.9 shows the running time distribution of the workload: the
average running time is 878.57 seconds, with a standard variation of 445.18
seconds.

As Figure 5.10 shows, the centralized dispatcher+FIFO algorithm is the
best among all scales. The decentralized dispatcher+PUSH scheme trails
by 14.05%, 29.07%, 33.22%, 52.76%, and 46.21% respectively at the scale
of 256 cores, 512 cores, 1024 cores, 2048 cores and 4096 cores. With the
work-stealing algorithm, the decentralized dispatching+PUSH scheme trails
the centralized dispatcher+FIFO algorithm by 0.44%, 3.79%, 7.40%, 16.55%,
and 11.00%. As for the local-stealing algorithm, it behaves almost identical
to the decentralized dispatcher+PUSH scheme due to the hotspot situation.
The hotspot situation is defined as a situation where a worker is saturated
with extra jobs, and all its neighbors are busy, thus no other workers could
steal jobs from this saturated worker.

23

4500

4000

3500

=] = =1 =1
= = = =
=] 0l =] N
3] o4 =] —

(spuoaas) awi) Fujuund

1000

500

TEEFT
TOFFT
TZEET
TEFET
T96CT
TBFZT
TO0ET
TZ5TT
TFOTT
T950T
T800T
T096
TZTh
Trag
Ta1E
129l
T0ZL
1Zi9
T#z9
1945
1825
T0EY
TZEY
THRE
TOEE
T2ET
Tore
TZ6T
TEFT
196
8%

lob 1D

Figure 5.9: Running Time Distribution of the 15344 DOCK6 Job Workload

H FIFD
H PUSH
B STEALING

70000

60000

T T T
=] =] =]
=] [=] =]
= [=] =]
=] [=] =]
=

3
30000

o~

(spucoas) uoiinjos o} 2w

8192

4096

2048

1024

312

236

Scale (Number of Cores)

Figure 5.10: Performance of Load Balancing Algorithms

24

Chapter 6

Application Experiments

Montage is an astronomy application that composes small images from tele-
scope into one large image. It has been successfully run over supercomputers
and grids, with MPI and Pegasus respectively [10]. The Pegasus version of
the Montage workflow has 9 stages, 3 of which involve steps that can be
executed in parallel. In the AME version of Montage, we use 7 stages. Stage
1 is mProject, which takes in raw input files and outputs reprojected images.
Stage 2 is mImgtbl, which takes the metadata of all the reprojected images,
and generates a summary image table. Stage 3 is mOverlaps, which analy-
ses the image table, and produces a metadata table describing which images
overlap along with a job list of mDiffFit tasks (one for each pair of overlap-
ping images). The fourth stage, mDiffFit, has jobs that take as input two
overlapping output files from Stage 1 and fits a plane to the overlap region.
Stage 5, mConcatFit, is similar to Stage 2; it gathers all output data from
the previous stage (coefficients of the planes), and summarizes them into one
file. mBgModel, Stage 6, analyses the metadata from Stage 2 and the data
from Stage 5, creating a set of background rectification coefficients for each
image, then generates a mBackground job list for the next stage. The last
stage of the current workflow is mBackground, which actually applies the
rectification to the reprojected images. Note the mBackground stage is the
only stage where we move data from the compute nodes to GPFS; in all other
stages, the data remains only on the compute nodes. The current version of
AME cannot run the last stage of Montage, mAdd, due to its computation
and data pattern. mAdd reads output files from mBackground, and writes an
aggregated file, the size of which is close to the sum of the sizes of the input
files. Instead, we would just run the Montage-provided sequential or MPI
version of mAdd using the data that AME stored in GPFS in the previous
stage. Improving this will be future work.

We ran a test of Montage that produces a 6 x 6 mosaic centered at galaxy

25

of jobs 1 core (s) 512 cores (s) | speedup
mProject 1319 21220.32 56.53 375.38
mDiffFit 3883 35960.12 95.32 377.27
mBackground | 1297 9815.92 64.44 152.33

Table 6.1: Performance Comparison of AME and Single-node Execution

GPFS (MB) | AME (MB) | Saving(%)

mProject-input 2800 2800 0%
mProject-output 5500 0.36 100%
mDiffFit-input 31000 0 100%
mDiffFit-output 3900 0.81 100%
mBackground-input 5200 0 100%
mBackground-output | 5200 5200 0%

total 53600 8001.17 85.72%

Table 6.2: Comparison of Data Transfer Amount between GPFS and AME
Approaches

M101. Tt has 1319 input files, each of which is 2 MB. Stage 1 outputs 1319
4-MB files. We ran the 2nd and 5th stage with the AME built-in reduction
function. Stages 3 and 6 runs on the login node, as they analyze summarized
files, and generate new jobs. Stages 1, 4, 7 each run in a parallel manner;
they process the input/output data with the data management scheme we
described in previous sections. Each job in Stage 7 writes a file of 4 MB
size. We compare the performance of the 512-core approach with a single
node execution to show speedup, as in Table 6.1. The time is measured in
seconds. We haven’t run the mAdd calculation, as this would not show any
improvement.

The 1-core data is estimated from the performance of the login node,
which is 4x times faster than a compute node. The mBackground stage has
a lower speedup because it moves the output from compute nodes to GPFS.
If we can run mAdd in a MTC style, then we could reduce this consumption
by transferring data among compute nodes, and only port the mAdd output
to GPFS. The mImgtbl and mBgModel stages are done with the AME built-
in reduction function. The processing times are short, 9.6 and 14 seconds

respectively. In this test, we reduce the data movement from compute nodes
to GPFS by 45.6 GB, as shown in Table 6.2.

26

Chapter 7

Conclusion

None of the existing parallel programming language models were designed
for exascale systems. Some of them, like MPI, might have a lower barrier to
scaling up to exascale with some optimization, but some of them are them-
selves limited by their architecture. Nevertheless, to scale up a program-
ming paradigm to the order of millions of CPU cores, we need to solve some
common issues, which are perfectly covered by our five categories of gaps:
resource provisioning, job scheduling, load balancing, data management and
system resiliency.

AME is a Many-Task Computing engine that is designed for ultrascale
supercomputers, with the focus on scalability. Using the principle of avoid-
ing a central point, AME’s schedulers dispatch jobs in a partially distributed
manner, AME’s intermediate data management scheme employ a linear scal-
able solution theoretically up to any scale, and AME’s load balancing scheme
relies on a work-stealing algorithm that is fully distributed across the alloca-
tion.

The benchmarks show that AME performs as expected. Scheduling per-
formance increases linearly up to 16,384 cores. We are confident that per-
formance will keep scaling up linearly until it hits the read performance
bottleneck of the GPFS configuration. Even though the intermediate data
management scheme introduces extra overhead, the overhead remains con-
stant in the benchmark tests up to 8,192 cores. The benchmark of the work-
stealing algorithm of AME shows that it performs no worse than the FIFO
algorithm, and with future research on this topic, we will have other solutions
to solve the large scale load balancing issue.

AME emphasizes its scalability on ultrascale machines with all of its jobs
schedulers, data managers and load balancers. In the scheduling test on
16,384 cores, AME ran 262,144 jobs with variable job lengths. And in the
data management test on 8,192 cores, the total number of files managed was

27

32,256. With 10 MB per file, the total file size was 323 GB.

AME improves running the Montage.The workflow that produces a 6x6
mosaic using 512 cores on BG/P handles 53.6 GB data in total. AME reduces
data movement between compute nodes and GPFS from 53.6 GB to 8 GB,
and significantly improves the utilization of the allocation during the run by
reducing the computing cycles that are wasted during the data transfer.

28

Chapter 8

Future Work

Two main aspects of this work are going to continue. One of them is scal-
ing up the intermediate data management scheme, and comparing it with
alternative solutions such as intermediate data store. The other one is in-
vestigating the load-balancing algorithm, where we will design and evaluate
more practical approaches for this problem.

One of the assumptions of this work is that we are scaling the POSIX se-
mantics to peta-scale. We will also investigate and evaluate other approaches,
such as other memory access techniques.

For the intermediate data management scheme, we will design and eval-
uate a file replication scheme based on the usage of the data across compute
nodes.

To address the reliability of the system, we need to provide domain scien-
tists with resilience features because the workflow run can fail during any part
of the run. For this, failed and unreturned jobs could be retried explicitly by
the scientists or automatically by the system.

Integrating the engine with existing parallel scripting language like Swift
is another challenging area of work. We will identify the primitive semantics
of parallel scripting languages and build them into the AME system. One
basic question is how to support dynamic branching in the engine. Rather
than solving that immediately, integrating AME with Pegasus is lower hang-
ing fruit, as the workflow description in Pegasus could be directly translated
to AME job descriptions.

With larger scale testing, we will answer a further question, which is a
basic assumption of this work: Will congestion on the interconnect network
dramatically increase as the scale increases? If so, we need to determine a
geographic-aware algorithm to select the location of DMCP servers to mini-
mize the traffic congestion.

Last but not least, we will collaborate with domain scientists from all

29

research areas to run more MTC applications with AME. AME will be the
bridge between their MTC applications and high-end supercomputers.

30

Chapter 9

Acknowledgment

This work was partially supported by ExM award from DOE under contract
number DE-SC0005380. We thank Kamil Iskra, Kazutomo Yoshii, and Har-
ish Naik from the ZeptoOS team at the Mathematics and Computer Science
Division, Argonne National Laboratory, for their effective and timely sup-
port. We also thank the ALCF support team at Argonne. Special thanks to
Professor Rick Stevens of Department of Computer Science, the University
of Chicago for his enlightening class.

31

Bibliography

1]

Samer Al-Kiswany, Abdullah Gharaibeh, and Matei Ripeanu. The case
for a versatile storage system. SIGOPS Oper. Syst. Rev., 44:10-14,
March 2010.

Bill Allcock, Joe Bester, John Bresnahan, Ann L. Chervenak, Ian Foster,
Carl Kesselman, Sam Meder, Veronika Nefedova, Darcy Quesnel, and
Steven Tuecke. Data management and transfer in high-performance
computational grid environments. Parallel Comput., 28:749-771, May
2002.

Tim G. Armstrong, Zhao Zhang, Daniel S. Katz, Michael Wilde, and Tan
Foster. Scheduling many-task workloads on supercomputers: Dealing
with trailing tasks. In Proceedings of Many-Task Computing on Grids
and Supercomputers, 2010, 2010.

Dhruba Borthakur. HDFS architecture.
http://hadoop.apache.org/common/docs/r0.20.0/hdfs_design.pdf.

Philip H. Carns, Walter B. Ligon, III, Robert B. Ross, and Rajeev
Thakur. PVFS: a parallel file system for linux clusters. In Proceedings

of the 4th annual Linuxz Showcase & Conference - Volume 4, pages 28—
28, Berkeley, CA, USA, 2000. USENIX Association.

Jim Crammond. Scheduling and variable assignment in the parallel par-
log implementation. In Proceedings of the 1990 North American con-
ference on Logic programming, pages 642-657, Cambridge, MA, USA,
1990. MIT Press.

Stephanie Donovan, Gerrit Huizenga, Andrew J. Hutton, Andrew J.
Hutton, C. Craig Ross, C. Craig Ross, Linux Symposium, Linux Sym-
posium, Linux Symposium, Martin K. Petersen, Wild Open Source, and
Philip Schwan. Lustre: Building a file system for 1,000-node clusters,
2003.

32

8]

[10]

[11]

[12]

[15]

[16]

[17]

James Frey, Todd Tannenbaum, Miron Livny, Ian Foster, and
Steven Tuecke. Condor-G: A computation management agent
for multi-institutional grids. Cluster Computing, 5:237-246, 2002.
10.1023/A:1015617019423.

Kamil Iskra, John W. Romein, Kazutomo Yoshii, and Pete Beckman.
ZOID: I/O-forwarding infrastructure for petascale architectures. In Pro-
ceedings of the 13th ACM SIGPLAN Symposium on Principles and prac-
tice of parallel programming, PPoPP "08, pages 153-162, New York, NY,
USA, 2008. ACM.

Daniel S. Katz, Joseph C. Jacob, G. Bruce Berriman, John Good, Anas-
tasia C. Laity, Ewa Deelman, Carl Kesselman, and Gurmeet Singh. A
comparison of two methods for building astronomical image mosaics on

a grid. In Proc. 2005 International Conference on Parallel Processing
Workshops, pages 85-94, 2005.

Jon Kleinberg and Eva Tardos. Algorithm Design. Addison Wesley,
2005.

E. L. Lusk, S. C. Pieper, and R. M Butler. More scalability, less pain:
A simple programming model and its implementation for extreme com-
puting. SciDAC' Review, 17, 1 2010.

Ioan Raicu, Yong Zhao, Catalin Dumitrescu, lan Foster, and Michael
Wilde. Falkon: a Fast and Light-weight tasK executiON framework. In
Proc. IEEE/ACM Supercomputing 2007, pages 1-12, 2007.

loan Raicu, Yong Zhao, Ian T. Foster, and Alex Szalay. Accelerating
large-scale data exploration through data diffusion. In Proceedings of
the 2008 international workshop on Data-aware distributed computing,

DADC 08, pages 9-18, New York, NY, USA, 2008. ACM.

Frank Schmuck and Roger Haskin. GPFS: A shared-disk file system for
large computing clusters. In In Proceedings of the 2002 Conference on
File and Storage Technologies FAST, pages 231-244, 2002.

Douglas Thain, Christopher Moretti, and Jeffrey Hemmes. Chirp: a
practical global filesystem for cluster and grid computing. Journal of
Grid Computing, 7(1):51-72, 2009.

Rajeev Thakur, William Gropp, and Ewing Lusk. Data sieving and
collective 1/O in ROMIO. Frontiers of Massively Parallel Processing,
Symposium on the, 0:182, 1999.

33

[18]

Michael Wilde, Ian Foster, Kamil Iskra, Pete Beckman, Zhao Zhang,
Allan Espinosa, Mihael Hategan, Ben Clifford, and loan Raicu. Parallel

scripting for applications at the petascale and beyond. Computer, 42:50—
60, 20009.

Justin M. Wozniak and Michael Wilde. Case studies in storage access by
loosely coupled petascale applications. In Proc. 4th Annual Workshop
on Petascale Data Storage, pages 16-20, 2009.

Zhao Zhang, Allan Espinosa, Kamil Iskra, Ioan Raicu, Ian Foster, and
Michael Wilde. Design and evaluation of a collective 1/O model for
loosely coupled petascale programming. In Proceedings of Many-Task
Computing on Grids and Supercomputers, 2008, pages 1-10, 2008.

34

