
computer 50

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/09/$26.00 © 2009 IEEE

existing codes. In parallel scripting, users apply parallel
composition constructs to existing sequential or parallel
programs. With such methods, programmers can quickly
specify highly parallel applications that may, depending
on problem scale, require for their execution a 16-core
workstation, a 16,000-core cluster, or a 160,000-core peta-
scale system.

Understanding how to scale scripting to 21st-century
computers should thus be a priority for researchers of
next-generation parallel programming models. In address-
ing this priority, we have focused on parallel scripting
for systems such as the IBM Blue Gene/P (BG/P) and Sun
Constellation.

MOTIVATION FOR PARAllel scRIPTINg
Most research and development on programming

models for exascale machines is concerned with tightly
coupled single-program, multiple-data (SPMD) applica-
tions—for example, computational fluid dynamic codes
applied to weather modeling and structural mechanics
codes applied to automobile design. Such applications cer-
tainly require large amounts of computing power and a
high-performance messaging infrastructure.

J
ohn Ousterhout aptly characterized scripting as
“higher-level programming for the 21st century.”1
Scripting has revolutionized application develop-
ment on the desktop and server, accelerating and
simplifying programming by allowing program-

mers to focus on the composition of programs to form
more powerful applications.

Might scripting provide the same benefits for parallel
computers—including extreme-scale computers—as it
does for workstations and servers? We believe that the
answer is yes. Scripting languages let users assemble
sophisticated application logic quickly by composing

Scripting accelerates and simplifies the
composition of existing codes to form more
powerful applications. Parallel scripting ex-
tends this technique to allow for the rapid
development of highly parallel applications
that can run efficiently on platforms rang-
ing from multicore workstations to peta-
scale supercomputers.

Michael Wilde, Ian Foster, Kamil Iskra, and Pete Beckman,
University of Chicago and Argonne National Laboratory

Zhao Zhang, Allan Espinosa, Mihael Hategan, and Ben Clifford, University of Chicago

Ioan Raicu, Northwestern University

Parallel
ScriPting for
aPPlicationS at
the PetaScale
and Beyond

r11wil.indd 50 10/21/09 1:18 PM

51NoVemBer 2009

images to highlight unusual conditions. Indeed, paral-
lel scripts can become quite complex. Whether simple or
complex, they have in common that they express large
amounts of parallelism concisely, via the composition of
existing programs that read and write files.

Advantages
As this example shows, parallel scripting is ideal for

parameter sweeps and ensemble studies, methods that
are increasingly used to explore sensitivity to parametric,
structural, and initial condition uncertainty.

Another important problem class for parallel scripting
is data analysis. A parallel script can be a natural tool for
both specifying and accelerating the analysis of a large
collection of discrete files or database records, particularly
in the case of application programs designed to analyze
a single file or database record. Biomedical researchers
apply this form of parallel scripting, for example, to pro-
cess images for training computer-aided medical diagnosis
algorithms and for research in surgical planning. Starting
with programs designed for analyzing single images, they
use parallel constructs to create concise scripts capable of
rapidly analyzing thousands of such images.

The compelling conclusion from such experiences is
that parallel scripting enables developers to build on the
codes of today to create the applications of tomorrow on
the full spectrum of available parallel systems.

sWIFT: A lANguAge FOR
PARAllel scRIPTINg

The framework within which we investigate paral-
lel scripting is the Swift language and system2 (www.
ci.uchicago.edu/swift). Linguistically, Swift blends a C-like
syntax with functional programming characteristics. The
language is designed to expose opportunities for parallel
execution, avoid the unnecessary introduction of nonde-
terminism, simplify the development of programs that
operate on file systems, and permit efficient implementa-
tion on distributed-memory parallel computers.

Swift integrates external persistent data—typically
contained in files and directories—into the language
model, improving the development process for programs
that read and/or write large datasets. This integration
is achieved via a mapping system that allows files and

However, it would be shortsighted to assume that such
exascale applications are the only ones that require high-end
supercomputers. Our experience suggests a substantial and
unmet need to run existing programs at large scale, via the
simple expedient of running many copies of programs at
once. Each such application may itself be a parallel message-
passing, multithreaded, or serial code. Developers of such
applications, like developers of SPMD applications, require
methods and tools to reduce complexity, enhance reuse,
and optimize performance on different platforms. Parallel
scripting can provide a basis for such methods and tools.

example
A simple example illustrates parallel scripting in

practice.
It is increasingly common for a weather modeler to run

many instances of a model, each with different initial con-
ditions, to quantify forecast uncertainty. In pseudocode,
the modeler wants to do something like the following:

initial_conditions[] = initialize()

forecast[] = null

foreach condition, index in initial_conditions:

 forecast[index] = weather_model(condition)

uncertainty = analyze(forecast)

This program first creates an array of files, each com-
prising a different set of initial conditions for the weather
model. Then, it invokes the multiple instances of the
weather model proper, using an operator (foreach) that
performs parallel execution based on available resources.
(The weather model runs on many processors; thus, on a
small parallel computer, the multiple model invocations
may be run one after the other. However, on a large parallel
computer, many or all can be run in parallel.) The output
from these multiple invocations is stored in a second array
of files. The final step analyzes the computed forecasts.

A researcher may wish to explore the sensitivity of the
same model to an input parameter, again for a range of
initial conditions. This new strategy can be defined via a
script that calls the same program in a different manner,
this time sweeping over a range of parameters:

parameters[] = getParameterSets()

initial_conditions[] = initialize()

foreach condition, cindex in initial_conditions:

 foreach parameterSet, pindex in parameters:

 forecast[cindex, pindex] = weather_model

 (parameterSet, condition)

Other variants of these simple scripts could select just
those runs that generate excessive rainfall, pass their
output to a flood model, and/or generate specialized

Parallel scripting enables developers
to build on the codes of today to
create the applications of tomorrow
on the full spectrum of available
parallel systems.

r11wil.indd 51 10/21/09 1:18 PM

COVER FE ATURE

computer 52

PSim that computes a single model structure, we want
to specify the higher-level structure of the ItFix applica-
tion. A traditional implementation might involve multiple
Bash or Perl scripts to allocate resources, structure on-
disk data, and manage the thousands of concurrent
tasks. In contrast, the following simplified Swift example
of a single ItFix round emphasizes how concise a paral-
lel script can be when using appropriate concepts and
constructs:

app (ProtGeo pg) predict (Protein pseq)

{

 PSim @pseq.fasta @pg;

}

(ProtGeo pg[]) doRound (Protein p, int n) {

 foreach sim in [0:n-1] {

 pg[sim] = predict(p);

 }

}

Protein p <ext; exec="Pmap", id="1af7">;

ProtGeo structure[];

int nsim = 10000;

structure = doRound(p, nsim);

The app declaration defines an interface to the PSim
(Open Protein Simulator) executable. This interface speci-
fies how to map from the typed Swift variables pg (protein
geometry file) and pseq (protein sequence structure) in
the header of procedure predict() to the command-
line program syntax expected by PSim. The expressions
@pseq.fasta and @pg insert the filenames mapped to those
arguments into the command line. The predict procedure
expects a protein structure containing a FASTA-format file
as its argument and returns a structure prediction in the
form of a PDB (Protein Data Bank) file that describes the
geometric locations of the protein’s atoms in its predicted
3D structure. The doRound() procedure performs one
“round” of parallel simulations by invoking the predict()
procedure n times in parallel, with each PSim invocation
executed by predict() performing a Monte-Carlo-based
structure prediction and returning an array of predictions.
The last four statements invoke doRound for one protein
sequence, running the PSim application program 10,000
times in parallel.

Swift’s dataflow model enables the multiple invocations
of predict() to run concurrently, as none depend on data
produced by another. Swift’s runtime system handles the
dispatch of each predict() call to an available node and
the movement of the associated data to and from that node.

Having thus defined the form of a single round, we can
then specify the iterative fixing algorithm proper. We do
this as follows, with declarations and parameter lists elided:

directories to be represented within programs as typed
language variables. Thus, a nested directory structure
may be represented in Swift as a nested data structure,
permitting a program that operates over all files in those
directories to be written as a nested set of foreach state-
ments. Similar constructs allow for the definition of typed
interfaces to external executables.

Swift reveals opportunities for parallel execution via
a combination of explicitly parallel constructs (such as
foreach) and a dataflow programming model. This model
is based on single-assignment variables, a construct that
also avoids unnecessary nondeterminism: If one pro-
gram produces a file that a second program consumes,
then Swift ensures that the shared variable representing

that file is not assigned a value until the first program
has completed execution. As a result of that assignment,
the second program then becomes executable. Studies
indicate that the amount of code needed to express ap-
plications in this form is substantially lower than by ad
hoc scripting in shell scripts or less expressive notations
such as directed acyclic graphs.3 The Swift runtime system
handles the dispatch of executable tasks to computers and
the movement of the data that these programs consume
and produce.

PARAllel scRIPTINg cAse sTudy
University of Chicago researchers have developed the

Open Protein Simulator,4 an application that predicts
tertiary (3D) protein structure, an important computational
problem in biochemistry due to the difficulty of experi-
mental structure determination. Their approach to this
problem involves running many instances of a structure
prediction simulation, each with different random ini-
tial conditions. The simulation uses an “iterative fixing”
algorithm5 (ItFix) that performs multiple “rounds,” each
involving many parallel Monte Carlo simulated annealing
models of molecular moves with energy minimization.
After each round, ItFix analyzes the results and picks the
best (usually lowest-energy) candidate structure as the
basis for the next round, continuing until a convergence
criterion is satisfied or a maximum number of rounds have
been completed.

This application is a natural candidate for paral-
lel scripting with Swift. Given an external executable

Swift integrates external persistent
data—typically contained in files and
directories—into the language model,
improving the development process for
programs that read and/or write large
datasets.

r11wil.indd 52 10/21/09 1:18 PM

53NoVemBer 2009

with a Swift script on 8,000 CPUs. The images show the
predicted structure of three proteins from the run; the
table shows their lowest root mean square deviation
from the experimentally known structure, and their im-
provement over older runs done on clusters with ad hoc
scripts (“DeBartolo”). The scatter plot indicates the cor-
relation between statistical energy potential and protein
structure accuracy for 985 simulations of protein 1af7. A
parallel Swift script performs the predictions and then
generates the plots, images, and a statistics summary
table, which are made available to researchers via a Web
interface.4

In the first two weeks of April 2009, shortly after
development of the ItFix Swift script, the system saw im-
pressive use: 67,178 structure predictions, totaling 208,763
CPU-hours, on Intrepid; and 17,488 jobs, totaling 1,425
CPU-hours, on Ranger, the TeraGrid Constellation at the
University of Texas at Austin. The same scripts were used
in that period to perform 22,495 predictions totaling 2,397
CPU-hours on other TeraGrid sites with between 4,000
and 9,000 cores each. The Intrepid runs alone produced
more than 100 gigabytes of compressed protein structure
trajectory data.

ItFix(Protein p, int nsim, int maxr,

 float temp, float dt)

{

 ProtSim prediction[][];

 boolean converged[];

 PSimCf config;

 ...

 iterate r {

 prediction[r] =

 doRoundCf(p, nsim, config);

 converged[r] =

 analyze(prediction[r], r, maxr);

 } until (converged[r]);

}

This code fragment uses the Swift iterate
statement to perform prediction rounds until a
convergence criterion has been satisfied or a max-
imum number of rounds have been performed.
The procedure doRoundCf() enables science con-
figuration parameters to be passed to the PSim
application.

Given these Swift procedures, researchers
can then use flexible scripts to leverage many
processors with relative ease, as in the following
parameter sweep script:

int nSim = 1000;

int maxRounds = 3;

Protein pSet[] <ext; exec="Protein.map">;

float startTemp[]=[100.0, 200.0];

float delT[]=[1.0, 1.5, 2.0, 5.0, 8.0];

foreach p, pn in pSet {

 foreach t in startTemp {

 foreach d in delT {

 ItFix(p, nSim, maxRounds, t, d);

 }

 }

}

Given 10 protein sequences from the external mapper
script "Protein.map", nsim = 1,000, two starting temper-
atures, and five temperature increments (to control the
simulated annealing algorithm), this script would execute
10 × 1,000 × 2 × 5 = 100,000 simulations in each of up
to three prediction rounds. On highly parallel systems
such as the Argonne BG/P Intrepid, this script can use a
substantial portion of the machine’s 160,000 processor
cores. (ItFix has run on up to 64,000 cores on Intrepid.)
Similar code with a generalized parameterization of ItFix
can sweep across any combination of settable parameters
that govern the structure prediction algorithm.

Figure 1 shows results of running ItFix with Swift for
eight protein structure predictions that were executed

1af7 1b72 1r69

Protein Length ST TUI Lowest RMSD (Å, BG/P) Lowest RMSD (Å, DeBartalo)

T1af7 69 25 100 2.07 2.5

T1b72 50 25 100 1.41 1.6

T1r69 61 25 100 2.11 2.4

0 2 4 6 8 10 12 14

–700

–750

–800

–850

–900

–950

–1,000

–1,050

–1,100

RMSD

En
er

gy

T1af7-50-500

Figure 1. Results of script for predicting eight protein structures on
8,192 CPUs of the Intrepid BG/P, with details for three proteins and
the Monte Carlo results for 1af7.

r11wil.indd 53 10/21/09 1:18 PM

COVER FE ATURE

computer 54

manager); and operating system support for basic script
execution and access to high-performance communica-
tions networks (for example, the ZeptoOS Linux-based
compute-node kernel). We have used these components to
run parallel scripts on up to (so far) 160,000 cores.

data management for petascale scripting
In a straightforward implementation of parallel script-

ing, large numbers of programs operate concurrently and
independently on a shared parallel file system such as
IBM’s General Parallel File System (GPFS) on the BG/P. Such
I/O patterns place a high burden on a persistent storage
infrastructure and tend to be inefficient due to the con-
sistency mechanisms enforced by traditional file system
semantics. Our solution to this problem, which we refer to
as collective data management (CDM),6 is loosely inspired
by collective parallel programming operations such as
broadcast, gather, and two-phase I/O.

CDM, as currently conceived, comprises a set of com-
munication strategies that leverage fast local file systems
as a high-speed local file cache, use broadcast operations
to handle distribution of common input data, employ ef-
ficient scatter/gather and caching techniques for input and
output, and aggregate compute node storage into larger file
systems that leverage a high-performance interconnect
to deliver data to applications. In this way, CDM enables
efficient and easy distribution of data files to and from
computing nodes and can greatly reduce load on the un-
derlying persistent storage system.

Our work to date with CDM has been performed largely
on the BG/P, and leverages features such as the BG/P inter-
connect architecture with its separate collective network,
ZeptoOS compute-node kernels with I/O forwarding, and
GPFS with full multiprocessor data consistency guaran-
tees. Most of these considerations apply to other deployed
petascale systems, all of which run some form of parallel
file system, such as GPFS, Lustre, or the Parallel Virtual File
System (PVFS). Moreover, all have some form of high-per-
formance, often hierarchical or heterogeneous, network
interconnects—for example, a mix of torus, tree, or Clos
networks.

We are currently experimenting with CDM concepts
through the explicit insertion of CDM primitives and heu-
ristics into applications. Our goal is that CDM operations
will ultimately be invoked automatically and transparently
by the Swift implementation, making them fully transpar-
ent to the programming model and user.

Falkon
To maximize the range of parallel scripts that we can

run efficiently, we require rapid task dispatch and exe-
cution. For example, keeping 160,000 cores efficiently
utilized running 60-second single-thread tasks requires
that tasks be dispatched at more than 160,000/60 = 2,700

AN ARcHITecTuRe FOR PeTAscAle
PARAllel scRIPTINg

Petascale computing raises challenging problems
for implementers of parallel scripting systems. Even a
simple parallel script can define large numbers of con-
current tasks that may operate on even larger numbers
of files. Task dispatch, data management and movement,
mixed-mode parallelism, resource management, failure
detection and recovery—these and other programming
model functions can lead to difficulties when millions of
tasks must execute efficiently and reliably on hundreds
of thousands of cores.

Figure 2 shows the four-layer software architecture that
we have developed in our investigations of parallel script-
ing systems. The four layers address, from the top down,
the parallel scripting language and its engine and runtime
system (Swift); a layer to support the data management de-
mands that parallel scripting—and many-task computing
in general—places on cluster file systems; runtime system
support for high-performance resource provisioning and
task dispatch (for example, the Falkon multilevel resource

Small, fast, local
memory-based �le systems

Falkon client
(load balancing)

Shared
global

�le system

Swift script Falkon services on
BG/P I/O processors BG/P processor sets

Figure 3. Swift scripts execute using the Falkon distributed
resource manager on the BG/P architecture.

Swift:
scripting language, task coordination,
throttling, data management, restart

Falkon:
ultrafast task dispatch and load
balancing over processor sets

ZeptoOS:
full Linux with fork/exec, dynamic linking
and torus/collective net access

Swift
scripts

Shell
scripts

Command
lists

Applications

Collective data management:
broadcast of large common datasets,
scatter and gather of small �les

Datasets

Figure 2. Architecture for petascale scripting.

r11wil.indd 54 10/21/09 1:18 PM

55NoVemBer 2009

system services such as the fork() and exec() used to
launch a new application program and the I/O functions
used to gain high-performance access to specialized
communication networks. On the BG/P, we provide
these features through the ZeptoOS Linux compute
node kernel,6 which implements Posix-compliant
system services, full dynamic loading of executables,
access to the BG/P collective (“tree”) network through
higher-level broadcast operations, IP connectivity over
the torus network, and facilities to stripe the RAM-disk
file systems of compute nodes and mount them as
high-performance intermediate file systems. On other
computers, such as the Constellation, we currently use
the native compute node OS that provides a complete
Posix interface, but we envision a role for ZeptoOS as a
vehicle for kernel experimentation even on the Constel-
lation and Cray XT5.

PARAllel scRIPTINg APPlIcATIONs
We have applied large-scale parallel scripting to nu-

merous applications.3-5,7-9 Each scripted application can
consume a large fraction, or even all, of a petascale com-
puter. All involve executing many tasks at once, often with
substantial amounts of communication both within each
task and among tasks. Table 1 lists some representative
examples.

tasks per second. Given that the batch schedulers typi-
cally run on parallel computers can take 60 seconds to
dispatch a single task, there is a clear need for alternative
technologies.

In our work to date we have used the Falkon distributed
resource manager7 to address this need, as shown in Figure
3. Falkon uses a combination of multilevel scheduling and a
hierarchical task dispatch architecture to enable rapid task
dispatch. Its multilevel scheduling architecture—similar
to that used in systems such as Condor and MyCluster—
separates two activities that are normally combined on a
supercomputer, namely allocating a node to a user and
dispatching tasks to that node. In the first provisioning
phase, Falkon requests nodes in large quantities, using a
system’s native batch scheduler, and starts a persistent task
execution agent on each core capable of rapidly executing
arbitrary and independent Posix processes. Once nodes
are thus allocated, Falkon uses a hierarchical network of
dispatchers to pass tasks to nodes that are, or soon will
be, ready to execute them. These methods have allowed
Falkon to dispatch more than 3,000 tasks per second on
the BG/P and to run on up to 160,000 cores.7

ZeptoOs
The lowest layer in our parallel scripting architecture

is a Posix-compliant operating system that provides

table 1. example parallel scripting applications.

Field description characteristics status

Astronomy Creation of montages from many digital images Many 1-core tasks, much communication, complex
dependencies

Experimental

Astronomy Stacking of cutouts from digital sky surveys Many 1-core tasks, much communication Experimental

Biochemistry* Analysis of mass-spectrometer data for post-
translational protein modifications

10,000-100 million jobs for proteomic searches using
custom serial codes

In development

Biochemistry* Protein structure prediction using iterative fixing
algorithm; exploring other biomolecular
interactions

Hundreds to thousands of 1- to 1,000-core simulations
and data analysis

Operational

Biochemistry* Identification of drug targets via computational
docking/screening

Up to 1 million 1-core docking operations Operational

Bioinformatics* Metagenome modeling Thousands of 1-core integer programming problems In development

Business
economics

Mining of large text corpora to study media bias Analysis and comparison of over 70 million text files of
news articles

In development

Climate science Ensemble climate model runs and analysis of
output data

Tens to hundreds of 100- to 1,000-core simulations Experimental

Economics* Generation of response surfaces for various eco-
nomic models

1,000 to 1 million 1-core runs (10,000 typical), then
data analysis

Operational

Neuroscience* Analysis of functional MRI datasets Comparison of images; connectivity analysis with
structural equation modeling, 100,000+ tasks

Operational

Radiology Training of computer-aided diagnosis algorithms Comparison of images; many tasks, much
communication

In development

Radiology Image processing and brain mapping for neuro-
surgical planning research

Execution of MPI application in parallel In development

 Note: Asterisks indicate applications being run on Argonne National Laboratory’s Blue Gene/P (Intrepid) and/or the TeraGrid Sun Constellation at the University of Texas at Austin (Ranger).

r11wil.indd 55 10/21/09 1:18 PM

COVER FE ATURE

computer 56

use the parallel scripting paradigm to refine several models
for exploring uncertainty through large-scale parallelism.

Figure 4 shows the results of a parallel script exploring
the implications of uncertainty—in this case, paramet-
ric uncertainty in substitution elasticities. Researchers
analyzed 5,000 samples from a perturbed input dataset in
parallel on Ranger and other parallel systems of 5,000+
cores each. The model evaluates relative sensitivity to
uncertainty (percent from the mean) for consumer and
industrial demand for electricity in eight geographical re-
gions. The dark-blue and light-blue envelopes are one and
two standard deviations from the mean.

structural equation modeling
The University of Chicago’s Human Neuroscience Lab-

oratory has developed a computational framework for a
data-driven approach to structural equation modeling8

(SEM) and has implemented several parallel scripts for
modeling functional MRI data within this framework. The
Computational Neuroscience Applications Research Infra-
structure8 (CNARI, www.cnari.org) uses Swift to execute
hundreds of thousands of simultaneous processes running
the R data analysis language, consisting of self-contained
structural equation models, on Ranger. These self-contained

Molecular docking
The DOCK molecular dynamics application is run regu-

larly on Intrepid to simulate the docking of small ligand
molecules to large macromolecules (receptors). A com-
pound that interacts strongly with a receptor associated
with a disease may inhibit its function and thus prove
useful in a beneficial drug.

This application is challenging because it involves
many tasks, each with a wide range of execution
times, and each computation involves significant I/O.
Protein description files for docking range from tens
to hundreds of megabytes and must be read for each
computation.

Argonne biochemists use Falkon for molecular docking
and surface screening, running at scales of up to 64,000
cores in a single scripted workload.

uncertainty in economic models
The University of Chicago-Argonne CIM-EARTH project

for integrated social, economic, and environmental model-
ing (www.cim-earth.org) uses Swift on petascale systems
to execute parameter sweeps of economic models that
forecast energy use and other commodity demands to ex-
amine the effects of uncertainty. CIM-EARTH researchers

Figure 4. CIM-EARTH energy-economics parameter sweeps of 5,000 models exploring uncertainty in consumer (top) and
industrial (bottom) electricity usage projections by region for the next five decades.

r11wil.indd 56 10/21/09 1:18 PM

57NoVemBer 2009

R processing jobs are data objects generated by OpenMx
(http://openmx.psyc.virginia.edu), a structural equation
modeling package for R that can generate a single model
object containing the matrices and algebraic information
necessary to estimate the model’s parameters. With the
CNARI framework, neuroscientists run OpenMx from Swift
scripts to conduct exhaustive searches of the model space.

Posttranslational protein modification
The University of Chicago’s Ben May Department for

Cancer Research is applying petascale parallel scripting
to the analysis of posttranslational protein modifications
(PTMs), complex changes to proteins that play essential
roles in protein function and cellular physiology. The
PTMap application takes in raw data files from mass-
spectrometry analysis of biological samples, along with
the entire set of sequences of the organism’s proteome,
and searches them for statistically significant evidence of
unidentified PTMs. The tool reads in a mass-spectrometry
file—typically 200 megabytes of data in mzXML format—
and protein sequences in FASTA format.

The analysis of a mass-spectrometry run for a single
proteome has abundant opportunities for parallelization
at the extreme scale. Researchers want to apply the latest
version of PTMap to identify unknown PTMs across a wide
range of organisms including E. coli, yeast, cows, mice,
and humans.

PARAllel scRIPTINg MOdel PeRFORMANce
Performance measurements indicate that on Intrepid,

Falkon can execute more than 3,000 tasks per second, and
launch, execute, and terminate 160,000 tasks on 160,000
cores in under one minute.7

Running DOCK under Falkon with a workload of
934,803 molecules (performing a DOCK execution for each
one) on 116,000 CPU cores of the Intrepid BG/P took two
hours,7 as shown in Figure 5a, delivering 21.4 CPU-years.
Per-task execution time varied considerably, from a mini-
mum of 1 second to a maximum of 5,030 seconds, and a
mean of 713±560 seconds. The two-hour run achieved
a sustained utilization of 99.6 percent for the first 5,700
seconds and an overall utilization of 78 percent due to
the workload tapering off at the end of the run. Despite
the loosely coupled nature of this application, our results
show that DOCK performs and scales well on a significant
fraction of Intrepid, with 99.7 percent efficiency when
compared to the same workload at 64,000 CPUs.

Figure 5b shows the progress and active processes of an
SEM workflow with over 418,000 jobs, executing as a single
Swift script invocation on Ranger to model neural pathway
connectivity from experimental fMRI data.8

We performed preliminary measurements of the new
PTMap application at modest scales, running the stage 1
processing of the E. coli K12 genome (4,127 sequences) on

0

100

200

300

400

500

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

0 1,200 2,400 3,600 4,800 6,000 7,200

Th
ro

ug
hp

ut
 (t

as
ks

/se
c)

Ta
sk

s c
om

ple
te

d

Time (sec)

(a)

Processors
Active tasks
Tasks completed
Throughput (tasks/sec)

0
20,000
40,000
60,000
80,000

100,000
120,000

Ac
tiv

e t
as

ks

Pr
oc

es
so

rs

Figure 5. Performance of three parallel application scripts:
(a) DOCK on BG/P—Falkon, 934,803 tasks, 2 hours; (b) SEM
on Constellation—Swift, 418,000 tasks, 41 hours; (c) PTMap
on BG/P—Swift, 4,127 tasks, 3 minutes.

0

10

20

30

40

50

60

70

80

90

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

0 14,400 28,800 43,200 57,600 72,000 86,400 100,800 115,200 129,600 144,000

Th
ro

ug
hp

ut
 (t

as
ks

/se
c)

Ta
sk

s c
om

ple
te

d

Time (sec)

(b) 0
200
400
600
800

1,000
1,200

Ac
tiv

e t
ask

s

Pr
oc

es
so

rs

0

20

40

60

80

100

120

140

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

0 50 100 150

Th
ro

ug
hp

ut
 (t

as
ks

/se
c)

Ta
sk

s C
om

ple
te

d

Time (sec)

(c) 0
400
800

1,200
1,600
2,000
2,400

Ac
tiv

e t
as

ks

Pr
oc

es
so

rs

r11wil.indd 57 10/21/09 1:18 PM

COVER FE ATURE

computer 58

compute node task that can be re-executed and thus need
not cause an entire application to fail. We view Swift and
MPI as complementary in that Swift can be used to coor-
dinate the execution of MPI applications.

Numerous dynamic load balancing libraries have been
implemented over the years, varying in details but not
general approach. Condor’s manager-worker library is one
example. Another, implemented within the MPI paradigm,
is the Asynchronous Dynamic Load Balancing library.14
ADLB moves MPI programming closer to the loosely
coupled Swift model, in that tasks are freed from the re-
strictions of two-sided communication and execute in a
manner similar to the traditional master-worker model. It
is still, however, a model for executing in-memory tasks,
unlike the Swift model of executing independent programs
linked by file exchange.

The design of Falkon was inspired by the Condor Glide-
in facility,15 which established the utility of multilevel
scheduling. Falkon is based on similar principles but imple-
ments a simpler facility that contains only the essential
semantics needed for first-in, first-out task scheduling and
thereby delivers orders of magnitude better scalability and
throughput on petascale systems.7

 High-performance languages for tightly coupled pro-
gramming, such as Chapel,16 also offer features similar
to those found in Swift. Swift and Chapel share the same
goal of programming productivity. However, Chapel is
oriented toward in-memory computing, while Swift
focuses on loosely coupled application program coordi-
nation. Like Chapel, Swift is a “global view” rather than
a “fragmented model” programming language, in which
the compiler and runtime system determine a program’s
mapping to the available runtime parallel resources.
Like Chapel’s forall statement, Swift’s foreach deter-
mines a parallel execution strategy for the programmer,
without the explicit task assignment of MPI-style frag-
mented models. Swift is also strongly typed like Chapel,
but offers the programmer fewer ways to circumvent
the typing model and lacks Chapel’s semantics for type
inference.

o
usterhout’s observation concerning the power
of scripting reflects a profound truth about
programming. As in other fields of human
endeavor, complex artifacts are often cre-
ated by coupling existing components. Thus,

tools that make it easy to couple existing programs and
apply programs to different data—in other words, script-
ing tools—align well with how people approach problem
solving.

Historically, people used scripting to prototype
programs on workstations, but for more serious pro-
gramming tasks, such as for parallel computers, they

2,048 Intrepid cores. Figure 5c summarizes this run. Over-
all, the average per-task execution time was 64 seconds,
with a standard deviation of 14 seconds. These 4,127 tasks
consumed a total of 73 CPU-hours, in a span of 161 seconds
on 2,048 processor cores, achieving 80 percent utilization
from a high-level Swift script.

We view these measurements—all on challenging
short-task-length applications—as a promising milestone
in meeting and in some cases exceeding the performance
needed for petascale scripting and beyond.

RelATed WORk
MapReduce,10 Sphere,11 and Dryad12 implement

library-based approaches to parallel processing of large
datasets. For example, in the MapReduce paradigm, data
is distributed over many nodes. SPMD applications can
then call both local functions that execute on local data
and reduction operations to combine distributed data.
This model can require both substantial rewriting of
programs and reorganization of data. In contrast, Swift
programs require no modifications to application pro-
grams. Instead, Swift allows the programmer to focus on
composing those programs into larger applications. We
view the ability to leverage the vast value embedded in
modern sequential and parallel application codes as an
important property of parallel scripting. Swift’s foreach
construct performs a simple map operation, and the act
of passing a multimember dataset to a procedure pro-
vides a simple and natural way to implement reduction
operations.

The Nimrod system13 is an example of a more spe-
cialized form of parallel programming system. Nimrod
supports parallel computations involving many invoca-
tions of an external executable, driven by a high-level
specification of a parameter study or, in more recent ver-
sions, a numerical optimization strategy.

SPMD message-passing systems such as MPI can be
used to express some task-parallel computations. However,
MPI is less well suited for the dynamic environments and
applications at which Swift excels. In addition, any SPMD
programming model, including MPI, faces issues of reli-
ability when scaling to millions of processors and beyond,
because of shorter mean time to failure as machines grow
in size. The parallel scripting model is more flexible in this
regard because failures are typically localized within a

Tools that make it easy to couple
existing programs and apply programs
to different data—in other words,
scripting tools—align well with how
people approach problem solving.

r11wil.indd 58 10/21/09 1:18 PM

59NoVemBer 2009

References
 1. J. Ousterhout, “Scripting: Higher-Level Programming for

the 21st Century,” Computer, Mar. 1998, pp. 23-30.
 2. Y. Zhao et al., “Swift: Fast, Reliable, Loosely Coupled Par-

allel Computation,” Proc. 2007 IEEE Congress on Services,
IEEE Press, 2007, pp. 199-206.

 3. Y. Zhao et al., “A Notation and System for Expressing and
Executing Cleanly Typed Workflows on Messy Scientific
Data,” ACM SIGMOD Record, Sept. 2005, pp. 37-43.

 4. G. Hocky et al., Toward Petascale ab initio Protein Folding
through Parallel Scripting, tech. report ANL/MCS-P1645-
0609, Argonne National Laboratory, 2009.

 5. J. DeBartolo et al., “Mimicking the Folding Pathway to Im-
prove Homology-Free Protein Structure Prediction,” Proc.
National Academy of Sciences, 10 Mar. 2009, pp. 3734-3739.

 6. Z. Zhang et al., “Design and Evaluation of a Collective I/O
Model for Loosely-Coupled Petascale Programming,” Proc.
2008 IEEE Workshop Many-Task Computing on Grids and
Supercomputers (MTAGS 08), IEEE Press, 2008, pp. 1-10.

 7. I. Raicu et al., “Toward Loosely Coupled Programming on
Petascale Systems,” article no. 22, Proc. 2008 IEEE/ACM
Conf. Supercomputing (SC 08), IEEE Press, 2008.

 8. S. Kenny et al., “Parallel Workflows for Data-Driven Struc-
tural Equation Modeling in Functional Neuroimaging,”
Frontiers in Neuroinformatics, Nov. 2009.

 9. A. Fedorov et al., Non-Rigid Registration for Image-Guided
Neurosurgery on the TeraGrid: A Case Study, tech. report
WM-CS-2009-05, Dept. of Computer Science, College of
William and Mary, 2009.

 10. J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” Comm. ACM, Jan. 2008, pp.
107-113.

 11. Y. Gu and R.L. Grossman, “Sector and Sphere: The Design
and Implementation of a High Performance Data Cloud,”
Philosophical Trans. Royal Society A, 28 June 2009, pp.
2429-2445.

 12. M. Isard et al., “Dryad: Distributed Data-Parallel Programs
from Sequential Building Blocks,” ACM SIGOPS Operating
System Rev., June 2007, pp. 59-72.

 13. D. Abramson et al., “Parameter Space Exploration Using
Scientific Workflows,” Computational Science—ICCS 2009,
LNCS 5544, Springer, 2009, pp. 104-113.

 14. P. Balaji et al., “MPI on a Million Processors,” Proc. 2009
European PVM/MPI Users’ Group Conf. (EuroPVM/MPI 09),
CSC-IT Center for Science, 2009.

 15. D. Thain and M. Livny, “Building Reliable Clients and
Services,” The Grid: Blueprint for a New Computing In-
frastructure, I. Foster and C. Kesselman, eds., Morgan
Kaufmann, 2005, pp. 285-318.

 16. B. Chamberlain, D. Callahan, and H. Zima, “Parallel
Programmability and the Chapel Language,” Int’l J. High-
Performance Computing Applications, Aug. 2007, pp.
291-312.

Michael Wilde is a software architect in the Mathematics
and Computer Science Division, Argonne National Labo-
ratory, and a Fellow at the University of Chicago/Argonne
National Laboratory Computation Institute. Contact him
at wilde@mcs.anl.gov.

used different methods and tools. It is time to reconsider
that position on parallel computers, just as people are
doing in other environments. Not only can a scripting
approach facilitate the rapid construction of large com-
putations via the composition of existing components,
but a scripting language’s composition operators often
reveal opportunities for parallel execution. Swift shows
how a language that supports simple dataflow concepts
and file system mapping constructs can allow for the
concise specification of highly parallel computations
within a scripting framework.

There might be some skepticism about whether script-
ing methods can be implemented efficiently on large-scale
parallel computers, given the need to schedule, dispatch,
and manage many tasks on many processors, all the while
supporting large numbers of fine-grained I/O operations
within both shared and local file system namespaces. Yet
our experience shows that these issues need not stand
in the way of performance. Data dependency and task
management activities can be scaled relatively easily with
the use of hierarchical scheduling methods. File system
operations can also be scaled, within the constraints
that single-assignment semantics place on how parallel
scripts access the file system: A file may have many read-
ers, but only one writer. The resulting computations may
sometimes stress a parallel computer’s communication
network, but they usually perform sufficiently well to ac-
complish a vast array of important scientific tasks with
unprecedented speed.

We continue to explore new applications that benefit
from parallel scripting and to extend the power and per-
formance of the Swift scripting system. Based on what
we have learned to date, we believe that parallel scripting
has proven its value on petascale systems and will play
an indispensable role in the exascale programming tool
chest.

Acknowledgments
We thank many people for collaborating with us: Sarah
Kenny, Steve Small, Michael Andric, and the OpenMx proj-
ect team on SEM and neuroscience applications; Glen Hocky,
Joe DeBartolo, Karl Freed, and Tobin Sosnick on the Open
Protein Simulator; Yingming Zhao and Yue Chen on PTMap;
Andrew Binkowski and Mike Kubal on molecular docking;
Joshua Elliott, Meredith Franklin, and Todd Munson on CIM-
EARTH; Andriy Fedorov on image processing for surgical
planning; Yong Zhao for early work on Swift; and Justin
Wozniak and Gail Pieper for comments on this article. This
research is supported in part by NSF grants OCI-721939 and
OCI-0944332, NIH grants DC08638 and DA024304, the U.S.
Department of Energy under contract DE-AC02-06CH11357,
NASA Ames Research Center GSRP grant NNA06CB89H,
and the University of Chicago/Argonne National Laboratory
Computation Institute. Computing resources were provided
by the Argonne Leadership Computing Facility, TeraGrid, the
Open Science Grid, and Amazon Web Services.

r11wil.indd 59 10/21/09 1:18 PM

COVER FE ATURE

computer 60

Allan Espinosa is a PhD student in the Department of Com-
puter Science at the University of Chicago. Contact him at
aespinosa@cs.uchicago.edu.

Mihael Hategan is a systems software developer at the
University of Chicago/Argonne National Laboratory Com-
putation Institute. Contact him at hategan@mcs.anl.gov.

Ben Clifford was formerly a systems software developer
at the University of Chicago/Argonne National Laboratory
Computation Institute. Contact him at benc@hawaga.org.
uk.

Ioan Raicu is an NSF/CRA Computing Innovation Fellow at
the Center for Ultra-scale Computing and Information Se-
curity, Department of Electrical Engineering and Computer
Science, Northwestern University. Contact him at iraicu@
eecs.northwestern.edu.

Ian Foster is a Distinguished Fellow at Argonne National
Laboratory, director of the University of Chicago/Argonne
National Laboratory Computation Institute, Chan Soon-
Shiong Scholar, and Arthur Holly Compton Distinguished
Service Professor of Computer Science at the University of
Chicago. Contact him at foster@anl.gov.

Kamil Iskra is an assistant computer scientist in the Math-
ematics and Computer Science Division, Argonne National
Laboratory, and a Fellow at the University of Chicago/Ar-
gonne National Laboratory Computation Institute. Contact
him at iskra@mcs.anl.gov.

Pete Beckman is division director at the Argonne Lead-
ership Computing Facility, a computer scientist in the
Mathematics and Computer Science Division, Argonne
National Laboratory, and a Senior Fellow at the University
of Chicago/Argonne National Laboratory Computation In-
stitute. Contact him at beckman@mcs.anl.gov.

Zhao Zhang is a PhD student in the Department of Com-
puter Science at the University of Chicago. Contact him at
zhaozhang@wuchicago.edu.

 Selected CS articles and columns are available for free at
 http://ComputingNow.computer.org.

Silver Bullet Security Podcast

In-depth in ter v iews w i th secur i t y gurus . Hos ted by Gar y McGraw.

w w w.computer.org /secur i t y /podcasts

Sponsored by

r11wil.indd 60 10/21/09 1:18 PM

