
Early Results of Deep Learning on the Stampede2
Supercomputer

Zhao Zhang, Weijia Xu, Niall Gaffney, Daniel Stanzione
Texas Advanced Computing Center

zzhang,xwj,ngaffney,dan@tacc.utexas.edu

ABSTRACT
Wepresent early results of the deep learningwork on the Stampede2
supercomputer. Our goal is to enable scalable and efficient deep
learning model training and serving to expedite scientific discovery.
We build three popular deep learning frameworks, namely, Intel-
Caffe, MXNet, and TensorFlow. With the built-in applications of
these frameworks (CaffeNet, AlexNet, GoogLeNet, and Cifar10),
we measure the scalability in both strong scaling and weak scaling
way. At the time of writing, we are able to build and run Intel-Caffe,
MXNet, and TensorFlow on multiple KNL nodes. While the MXNet
and TensorFlow performance are still being tuned, we manage to
scale the afore-mentioned applications in Caffe on 512 KNLs with
∼80% efficiency compared to a single KNL performance.

1 INTRODUCTION
Scientists from many domains are actively exploring and adopting
deep learning as a cutting-edge methodology to make research
breakthrough. The impact of deep learning is across fields, such
as drug discovery [4], disease diagnosis [10], particle physics [5],
and neurology [20]. We have also observed a new trend of using
deep learning model to reduce the simulation complexity, e.g., in
condensed matter physics [7]. Domain scientists usually use open
source deep learning frameworks to train and serve the deep learn-
ing models. Caffe [15], Theano [6], Torch [11], TensorFlow [3],
CNTK [23], and MXNet [8] are a few representative frameworks
among many. Given the computation, communication, and I/O
pattern of the deep learning applications, they are naturally good
candidates for supercomputers [9].

We, the Texas Advanced Computing Center (TACC), are embrac-
ing this new type of application and the programming paradigm
change it may bring. Our present roadmap to support deep learning
at TACC is to first enable scalable and efficient model training with
a few popular open source deep learning frameworks, then to open
the access to our users on the Stampede2 supercomputer [21]. At
the time of writing, we manage to build and run Intel-Caffe [13],
MXNet, and TensorFlow on multiple KNL nodes. We complete a
comprehensive performance measurement of Intel-Caffe using ex-
isting image classification applications of CaffeNet [1], AlexNet [18],
and GoogLeNet [22] on ImageNet dataset [12] and ConvNet [2] on
the Cifar10 dataset [17].

We tune the Intel-Caffe performance on a single KNL, and de-
termine 64 OpenMP threads reaches the peak performance. The
64-thread single node performance is ∼2x faster than a Nvidia’s
K40 GPU and ∼2x slower than that of a P100 GPU. Our strong
scaling performance shows a ∼50% efficiency on 8 KNLs for vari-
ous applications. And the weak scaling performance shows a ∼80%
efficiency up to 512 KNLs.

2 ACCOMPLISHMENTS
Early results of TACC’s deep learning work include building Intel-
Caffe, MXNet, and TensorFlow on the Stampede2 supercomputer,
single node performance evaluation and comparison to Nvidia
GPUs, and the scale-out performance measurements.

The Stampede2 supercomputer is equipped with 4,200 KNL com-
pute nodes in Phase 1, with 96 GB DDR4 and 16 GB MCDRAM.
The interconnect is a 100 Gb/sec Intel Omni-Path network with
a fat-tree topology. The file system used in this report is a Lustre
deployment with ∼30 PB storage capacity.

The Intel distribution of Caffe (the Jan 2017 release) is com-
piled with Intel Machine Learning Scaling Library (MLSL) [14].
For MXNet and TensorFlow, we use the v0.10.0-79-g790328f tag
and v1.3.0-rc2 release, respectively. All three frameworks support
parallel training enabled by MPI. In particular, Intel-Caffe uses the
data-parallel approach for distributed training. In addition to the
data-parallel approach, MXNet, and TensorFlow also support the
model-parallel approach in the recursive neural network, where
the memory consumption of parameters exceeds a single node’s
memory space.

We use four applications: ConvNet on Cifar10 dataset, and Caf-
feNet, AlexNet, and GoogLeNet on a 100-category ImageNet dataset.
All these four applications are Convolutional Neural Networks.

For each data point, we run the experiment three times and
report the average and standard deviation. The only exceptions
are in the 512-node and 1024-node measurements, where we only
measure once due to the expensive node hour cost.

2.1 Intel-Caffe Single Node Performance
To tune the Intel-Caffe performance on a single node, we use two
applications: ConvNet on the Cifar10 dataset and CaffeNet on a
100-category ImageNet dataset. There are a few runtime options in
the Intel-Caffe command line. Users can specify the engine to be
MKL2017, MKLDNN, or leave it blank to use the default option. Our
observation is that MKL2017 run ∼3.7x and ∼1.4x faster than the
default option and using the MKLDNN option outputs inconsistent
results.

Next, we fix the problem size and measure the performance with
varying the number of OpenMP threads. As shown in Figure 1, using
64 OpenMP threads results in best performance. Fewer threads, e.g.,
32, can not make efficient use of the many-core architecture, and
128 threads saturate the processor and slow down the application
performance. So, in the rest of the experiments, we fix the number
of OpenMP threads to be 64.



Zhao Zhang, Weijia Xu, Niall Gaffney, Daniel Stanzione

Figure 1: Scaleup Performance of ConvNet and CaffeNet
with Varying Number of OpenMP Threads.

2.2 Strong Scaling of Intel-Caffe
Using 64 OpenMP threads with the MKL2017 engine delivers ∼1.8-
2.3x performance speedup for all four applications compared to
that of one Nvidia K40 GPU. It is ∼1.4-1.9x slower compared to that
of one Nvidia P100 GPU, as shown in Figure 2. In the test cases of
CaffeNet and AlexNet, two KNLs perform ∼20% faster than a single
P100 GPU, despite less than perfect scaling.

We then fix the problem size and measure the performance on
varying scales. The scaling efficiency keeps dropping with increas-
ing number of the nodes. ConvNet and GoogLeNet’s scaling effi-
ciencies are down to ∼50% on eight KNLs, while the CaffeNet and
AlexNet are at ∼30% on eight KNLs.

We believe this is due to the unscalable implementation of the
back-propagation algorithm, given the feed-forwarding process is
embarrassingly parallel with the data parallel approach. And the
gradient communication can be handled with MPI collectives in a
scalable manner

2.3 Weak Scaling of Intel-Caffe
In this experiment, we seek to understand Intel-Caffe’s weak scaling
performance, as machine learning practitioners care about training
and validation accuracy with a fixed number of epochs (an epoch
is a traverse of all data items in the training datasets). Weak scaling
can be useful if it can achieve high scaling efficiency.

We fix the batch size per node, so the total batch size is propor-
tional to the node count. Figure 3 shows the weak scaling perfor-
mance compared to that of one KNL. All four applications are able
to keep up to ∼80% scaling efficiency up to 512 KNLs. On 1,024
KNLs, the scaling efficiency drops significantly. This is due to an
MLSL scalability issue, which we are investigating with Intel people.
This issue blocks starting Intel-Caffe on 1,024 KNLs, and we have to
turn off the MLSL server then run Intel-Caffe with pure MPI across
nodes.

Figure 2: Strong Scaling Performance of ConvNet, CaffeNet,
AlexNet, and GoogLeNet on Stampede2.

Figure 3: Weak Scaling Performance of ConvNet, CaffeNet,
AlexNet, and GoogLeNet on Stampede2.

2.4 MXNet and TensorFlow
We also evaluate the performance of MXNet (v0.10.0-79-g790328f)
and TensorFlow (v1.3.0-rc2) on one KNL node using a set of image
classification application. In general, these applications are 1.2-3.7x
and 5.0-22.3x slower than the performance on a Nvidia K40. This is
due to the lack of KNL optimization in the source code. We notice
that Intel has put effort into MXNet [16] and TensorFlow [19]
optimization. We will keep the pace with Intel and provide the
optimized software to our users at their earliest availability.

3 SUMMARY
Our goal is to enable and support scientists’ exploration and ex-
ploitation of deep learning techniques in their research fields. So
far, we have built three popular deep learning frameworks on the



Early Results of Deep Learning on the Stampede2 Supercomputer

Stampede2 supercomputer and profiled the single-node perfor-
mance. Particularly for Intel-Caffe, we profiled and studied the
strong-scaling performance and compared that to Nvidia’s K40 and
P100 GPU. We scale four image classification applications with real
dataset up to 512 KNLs with ∼80% efficiency in the weak scaling
manner.

Technically, our next steps include scaling Intel-Caffe up to all
4,200 KNLs and scaling out MXNet and TensorFlow on the Stam-
pede2 supercomputer and its Phase 2 Sky Lake processors. Strategi-
cally, we will release these deep learning frameworks and provide
official support with training sessions. We will also invite and en-
courage users to try these deep learning frameworks on Stampede2
and possibly incubate a few research projects that leverage deep
learning techniques.

REFERENCES
[1] CaffeNet. https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_

caffenet.
[2] ConvNet. https://code.google.com/archive/p/cuda-convnet/.
[3] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning.
In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). Savannah, Georgia, USA, 2016.

[4] A. Aliper, S. Plis, A. Artemov, A. Ulloa, P. Mamoshina, and A. Zhavoronkov. Deep
learning applications for predicting pharmacological properties of drugs and
drug repurposing using transcriptomic data.Molecular pharmaceutics, 13(7):2524–
2530, 2016.

[5] P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-
energy physics with deep learning. Nature communications, 5, 2014.

[6] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian,
D. Warde-Farley, and Y. Bengio. Theano: A cpu and gpu math compiler in python.
In Proc. 9th Python in Science Conf, pages 1–7, 2010.

[7] J. Carrasquilla and R. G. Melko. Machine learning phases of matter. Nature
Physics, 13(5):431–434, 2017.

[8] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang. MXNet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

[9] A. Coates, B. Huval, T. Wang, D.Wu, B. Catanzaro, and N. Andrew. Deep learning
with cots hpc systems. In Proceedings of The 30th International Conference on
Machine Learning, pages 1337–1345, 2013.

[10] N. Codella, Q.-B. Nguyen, S. Pankanti, D. Gutman, B. Helba, A. Halpern, and
J. R. Smith. Deep learning ensembles for melanoma recognition in dermoscopy
images. arXiv preprint arXiv:1610.04662, 2016.

[11] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like environment
for machine learning. In BigLearn, NIPS Workshop, number EPFL-CONF-192376,
2011.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[13] Intel. Intel Distribution of Caffe. https://github.com/intel/caffe.
[14] Intel. Intel Machine Learning Scaling Library for Linux OS. https://github.com/

01org/MLSL.
[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,

and T. Darrell. Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093, 2014.

[16] Y. J. K. Installing and Building MXNet with IntelÂő MKL. https://software.intel.
com/en-us/articles/installing-and-building-mxnet-with-intel-mkl.

[17] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny
images. 2009.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25, pages
1097–1105. Curran Associates, Inc., 2012.

[19] E. O. TensorFlow Optimizations on Modern Intel Ar-
chitecture. https://software.intel.com/en-us/articles/
tensorflow-optimizations-on-modern-intel-architecture.

[20] S. M. Plis, D. R. Hjelm, R. Salakhutdinov, and V. D. Calhoun. Deep learning for
neuroimaging: a validation study. arXiv preprint arXiv:1312.5847, 2013.

[21] D. Stanzione, B. Barth, N. Gaffney, K. Gaither, C. Hempel, T. Minyard,
S. Mehringer, E. Wernert, H. Tufo, D. Panda, and P. Teller. Stampede 2: The
evolution of an xsede supercomputer. In Proceedings of the Practice and Experi-
ence in Advanced Research Computing 2017 on Sustainability, Success and Impact,
PEARC17, pages 15:1–15:8, New York, NY, USA, 2017. ACM.

[22] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

[23] D. Yu, A. Eversole, M. Seltzer, K. Yao, Z. Huang, B. Guenter, O. Kuchaiev, Y. Zhang,
F. Seide, H. Wang, et al. An introduction to computational networks and the
computational network toolkit. Microsoft Technical Report MSR-TR-2014–112,
2014.

https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
https://code.google.com/archive/p/cuda-convnet/
https://github.com/intel/caffe
https://github.com/01org/MLSL
https://github.com/01org/MLSL
https://software.intel.com/en-us/articles/installing-and-building-mxnet-with-intel-mkl
https://software.intel.com/en-us/articles/installing-and-building-mxnet-with-intel-mkl
https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture
https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture

	Abstract
	1 Introduction
	2 Accomplishments
	2.1 Intel-Caffe Single Node Performance
	2.2 Strong Scaling of Intel-Caffe
	2.3 Weak Scaling of Intel-Caffe
	2.4 MXNet and TensorFlow

	3 Summary
	References

