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ABSTRACT

Many scientific applications can be efficiently expressed with

the parallel scripting (many-task computing, MTC) paradigm.

These applications are typically composed of several stages
of computation, with tasks in different stages coupled by a
shared file system abstraction. However, we often see poor
performance when running these applications on large scale
computers due to the applications’ frequency and volume of
filesystem 1/O and the absence of appropriate optimizations
in the context of parallel scripting applications.

In this paper, we show the capability of existing large
scale computers to run parallel scripting applications by first
defining the MTC envelope and then evaluating the envelope
by benchmarking a suite of shared filesystem performance
metrics. We also seek to determine the origin of the per-
formance bottleneck by profiling the parallel scripting ap-
plications’ I/O behavior and mapping the I/O operations to
the MTC envelope. We show an example shared filesystem
envelope and present a method to predict the I/O perfor-
mance given the applications’ level of I/O concurrency and
I/0 amount. This work is instrumental in guiding the de-
velopment of parallel scripting applications to make efficient
use of existing large scale computers, and to evaluate per-
formance improvements in the hardware/software stack that
will better facilitate parallel scripting applications.

Categories and Subject Descriptors

D.4.8 [Operating systems]: Performance—Measurements,
Modeling and prediction
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1. INTRODUCTION

Many-task computing applications [25] link existing par-
allel or sequential programs via a filesystem abstraction.
Task dependencies are represented by file production and
consumption. Parallel scripting is a powerful and conve-
nient tool to construct such applications without modifying
the original programs and can naturally maximize execution
parallelism. Such parallel scripting applications have been
widely used by scientists in fields of astronomy [24, 14, 15],
biological science [26, 22, 2, 18], chemistry [12], earth sci-
ence [17, 11], economics [10], material science [9] and many
others. And researchers have enabled such applications on
many types of platforms such as clusters, clouds, supercom-
puters, and grids [37, 1, 3, 19, 34, 36, 35].

On the platforms where there is shared file system that
can be used for inter-task communication, a task reads one
or several files as input, executes for a while, then writes
several files as output. Tasks in later stages might consume
the files produced in previous stages as input files. Parallel
scripting applications usually have a large number of tasks,
and both filesystem access frequency and I/O amount are
not well addressed by existing shared file systems and I/O
modules. To make good use of a large scale computer, a
programmer should have a picture of how the machine fa-
cilitates his application, or how his application fits the ma-
chine. For example, parallel scripting programmers should
know how many times a task could read a file within unit
time and how many bytes a task could write to shared filesys-
tem given the concurrency. Unfortunately, we don’t have a
well-defined shared filesystem benchmark suite that shows
the capacity of parallel scripting applications.

This paper’s goal is to define and quantitatively evaluate
such large scale computers’ capacity of parallel scripting ap-
plications, which we call the envelope. Our approach is to
first understand the applications’ I/O behavior and identify
the performance metrics that characterize the application
I/0 performance on large scale computers. Second, we mea-
sure those performance metrics on existing large scale sys-
tem with scales to define the MTC envelope on each scale



Table 1: Basic Application Stage Statistics

Montage BLAST CyberShake
stage mProject mDiff mFit mBack | formatdb blastall merge | extract seis peakGM
tasks 1319 3883 3883 1297 63 1008 16 393 11868 11868
input files 2638 7766 7766 1297 63 4032 1008 1179 35604 11868
output files 2594 3883 7746 1297 252 1008 16 786 11868 11868
input amount (GB) 3.2 2.2 35.8 5.8 4.0 64.5 0.9 41.3  2655.2 0.4
output amount (GB) 10.9 0.001 3.6 5.4 4.7 0.9 0.06 40.1 0.3 0.03

as well as the scalability of existing shared file systems. The
third step is to map the applications’ behavior on the mea-
sured envelope. By doing this, we can classify the applica-
tion by the factor(s) that bound its I/O performance. The
last step is to deliver an guide to show the estimated I/O
time consumption given the application’s I/O concurrency
and I/O amount.

More specifically, we pick three typical parallel script-
ing applications: Montage [14], BLAST [2] and CyberShake
PostProcessing [17]. We run all stages of those applications
and trace the filesystem related system calls, then align the
trace of the tasks in any one stage with the system call se-
quence from the profile of that stage. We identify four com-
mon concurrent filesystem accesses from those application
profiles: file open, file create, read, and write. The parallel
scripting applications feature a multi-read-single-write 1/0
pattern, where a file can be read many times, but only writ-
ten once. Within the multi-read pattern, we further classify
read access as 1-to-1 read and N-to-1 read. The 1-to-1 read
refers to the case where each task reads one distinct file,
while the N-to-1 read refers to the cases where many tasks
read one common file.

We therefore define the MTC envelope as eight curves,
showing

e file open operation throughput,
file creation operation throughput,
1-to-1 read data throughput,
1-to-1 read data bandwidth,
N-to-1 read data throughput,
N-to-1 read data bandwidth,
write data throughput, and
e write data bandwidth

on the y axis, versus the number of GPFS clients on the z
axis.

With these eight curves measured on the GPFS system
of the Intrepid BG/P supercomputer, we are able to classify
those application stages by the factors that bound them. An
application can be metadata bound or I/O bound. In the
1/0 bound case, they can further be classified as operation
throughput bound, data bandwidth bound or concurrency
bound. To guide users programming parallel scripting ap-
plications on systems with shared filesystems, we compile
benchmark performance data on operation concurrency and
I/0 amount into two heat maps of projected I/O throughput
and bandwidth for each filesystem. This allows the program-
mer to tell if the application can run efficiently on a given
computer, what is an efficient scale for the application, and
how much time the I/O operations will take.

In this first attempt to characterize the MTC envelope of
large-scale systems we assume two realistic constraints: we
evaluate a set of existing, unmodified application scripts as

they are currently implemented by their science communities
(but transcribed into Swift for ease of testing); similarly
we measure the behavior of the current production BG/P
filesystem with its current configuration, typical background
workload, and performance limitations. Note that we run
many of our performance measurements on the I/O nodes
(referred to as GPFS clients). The reader should consider
that each of these I/0O nodes is associated with 64 compute
nodes, or 256 compute cores.

Regarding definitions, throughout the paper, we refer to
the entire parallel script used to execute a scientific task as
the application, and examine in detail the various stages of
processing within these application scripts. A task within
these stages refers to the invocation of a single application
program by the parallel script. Further, we model and exam-
ine the throughput of the application script in terms of the
rate at which it performs I/O operations, and the bandwidth
in terms of the rate of data transfer in units of (scaled) bytes
per second.

The contributions of this work include a novel approach to
understand the concurrency of parallel scripting applications
I/0 behavior, a suite of performance metrics that character-
ize parallel scripting applications’ I/O behavior and measure
later system improvements, and a guide for parallel scripting
application writers to make better use of existing hardware-
software stack.

2. APPLICATION I/O PROFILE

We profile the I/O behavior of the parallel stages of Mon-
tage, BLAST, and CyberShake (ten stages total). Table 1

shows basic statistics: number of tasks, number of input/output

files, and total input/output amounts. Note that the ratio
between the input amounts and the number of input files
denotes how many bytes are read from each input file, while
a file or part of a file can be read many times.

2.1 Application Configuration

For Montage, we run a 6x6 degree mosaic centered at
galaxy m101. Montage has four parallel stages: mProject,
MDiff, mFit, and mBackground (referred to as mBack in
this paper for reasons of space.) For BLAST, we search
the first 256 sequences in the NCBI nr database against
the database itself. BLAST has three parallel stages: for-
matdb, blastall, and merge. For CyberShake, we run the
post-processing workload against the geographic site TEST.
CyberShake has three parallel stages: extract, seis, and peak
(referred to as peakGM in this paper for reasons of clarity.)

2.2 Application Profiling Methodology

For each application stage, we run all tasks in parallel
and trace all system calls during execution. We initially



attempted to align the execution trace with the absolute
time, as shown in Figure 1, and found two problems. First,
run time is dependent on the machine where the application
stage is run, so the profile on Machine A is not necessarily
valid on Machine B. Second, the filesystem is usually shared
by multiple users, so if we align the execution trace by time,
the shared filesystem access delay from other users will add
noise, and we won’t be able to observe the spike of oper-
ations that would otherwise be concurrent. Note that we
aggregated file creation and file open over one second inter-
vals. Most of the time, the frequency of open is identical to
the frequency of create, as in most of the traces for peakGM,
the open and creation occur in the same second.
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Figure 1: peakGM metadata operations vs. time

We therefore decided to align the system call trace with
the order of the system call sequence, rather than with time.
The significant benefit of this is that the profile represents
the characteristics of the application, independent of any
machine, and the time can be projected when we map the
filesystem operation onto specific machines. We are thus
able to see spikes of concurrent metadata operations in reads
and writes.

2.3 Metadata Operation Distribution

Among the ten application stages, we see two major pat-
terns of metadata operation distribution. Figure 2 shows
file creation and open distribution over the system call se-
quence: file creation and file open accesses are two spikes.
When those two sets of operations are executed on a system
with a shared file system, they will first be limited by the
concurrency bound, then they will be limited by throughput
at a particular scale. A second pattern is shown in Figure 3,
where the file creations are spread across a time range, which
mean that at any given time, the concurrency bound of file
creation in mProjectPP is 303, though there are 2,594 file
creations in total.

In those reads, we see three access patterns for input files:
some files are read by only one task in a stage, some files
are read by all tasks in a stage, and some files are read by
a number of tasks less than the total number of tasks in
a stage. We refer those three cases as 1-to-1, N-to-1, and
Few-to-1 respectively. Table 2 shows the detailed statistics
of the metadata operation spikes as well as the maximum
concurrency. Those access patterns suggestion opportuni-
ties for potential read optimization in I/O middleware. For
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Figure 2: peakGM metadata operations vs. system
call sequence
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Figure 3: mProjectPP metadata operations vs. sys-
tem call sequence

example, the N-to-1 reads can be replaced by a single read
by one of the tasks, followed by a broadcast to all other tasks
with a parallel algorithm. MPI-collective functions [32] can
apply such optimizations, but this breaks the independent
MTC paradigm.

2.4 1/0 Distribution

To show the I/O traffic of each application stage, we
record the number of bytes of each read() and write() sys-
tem call. Then we align this I/O traffic to the system call
sequence to determine its concurrency. In Figures 4-9, the
vertical lines show the total number of bytes read/written at
any given system call, and the points show the average I/O
amount. Table 3 shows the trace length (number of sys-
tem calls), the maximum read/write concurrency, and the
maximum I/O traffic.

One interesting I/O pattern in the mProjectPP, mFit, and
mBack stages is shown in Figures 4, 5, and 6, where the
reads and writes tend to transfer the same amount of I/O
traffic per system call, and the number is close to 64 KBytes.
It is likely that a buffer of size 64 KBytes is used for file
access. We see the same pattern for reads in the formatdb,
blastall, and merge stages, shown in Figures 7, 8, and 9.
However, the write traffic in formatdb and blastall comprises



Table 2: Application Metadata Operation Stats

Montage BLAST CyberShake
stage mProject mDiff mFit mBack | formatdb blastall merge | extract seis peakGM

open spikes 8 1 10 4 1 4 63 1 1 1

Max. open concurrency 1319 3883 3883 1297 63 1008 16 393 11868 11868
create spikes 0 1 0 0 3 1 1 0 0 1

Max. create concurrency 303 3883 445 113 63 1008 16 81 768 11868
1-to-1 read spikes 4 1 6 4 1 0 63 1 0 1
N-to-1 read spikes 4 0 4 0 0 1 0 0 0 0
Few-to-1 read spikes 0 0 0 0 0 3 0 0 1 0

Table 3: Application I/O Stats

Montage BLAST CyberShake
stage mProject mDiff mFit mBack | formatdb Dblastall merge | extract seis peakGM
trace length 388 80 328 201 488145 17977 3206 35048 393 11868
Max. read concurrency 1319 3883 3883 1297 63 1008 63 16 393 11868
Max. write concurrency 1246 913 1931 1216 63 1008 16 16 183 768
Max. bytes read/call (MB) 86.4 250.3 254.5 84.9 4.1 6.6 1 1.0 129.0 T777.8
Max. bytes written/call (MB) 81.5 0.3 110.2 79.6 2.6 0.2 16 1.0 6.0 18.4
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Figure 4: mProjectPP I/0 traffic profile

3. MTC ENVELOPE

The goal of the MTC envelope is to show the capacity
of large scale computers in the context of parallel scripting
applications. Section 2 showed us that the I/O performance
of an application stage is first bound by concurrency, which
determines the metadata throughput, 1/O throughput and
bandwidth at a certain scale. Then the I/O performance is
bound by metadata throughput. For either read or write
traffic, the stage will query the metadata to find out the lo-

cation of the actual files or create entries in metadata server
if the files do not exist in the write case. Finally, the I/O
performance is bound by I/O throughput for small files and
by I/O bandwidth for large files.

3.1 Definition
We define the MTC envelope for a fixed number of com-
puting resources as a set of eight performance metrics:
file open operation throughput,
file creation operation throughput,
1-to-1 read data throughput,
1-to-1 read data bandwidth,
N-to-1 read data throughput,
N-to-1 read data bandwidth,
write data throughput, and
write data bandwidth
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Figure 7: formatdb I/O traffic profile

In §2, we also discussed the Few-to-1 case, but here we sim-
plify this by merging Few-to-1 into 1-to-1.

A system will exhibit different MTC envelopes at differ-
ent scales. Its throughput and bandwidth will change as
the level of I/O concurrency changes. Therefore, we further
define the MTC envelope for a given large scale system as
eight curves (rather than eight points), where each curve re-
flects the change of one of the performance metric along the
scales.

3.2 Measurements

In this paper, we measure the GPFS deployment on the
Intrepid BG/P at Argonne National Laboratory as an exam-
ple. This GPFS deployment has one metadata server and
128 IBM x3545 file servers, each with two 2.6-GHx Dual
Core CPU and 8 GB RAM. The compute nodes reach the
shared file system through I/O nodes, where each I/O node
is associated with 64 compute nodes. In this paper, we run
our envelope measurements directly on the I/O nodes.

We run our I/O benchmark workloads on the I/O nodes,
where each I/O node is a GPFS client. The performance
test space for metadata operations is {create, open}x{1, 2,
4, 8, 16, 32, 64, 128, 256} clients, while the performance
test space for I/O is {read, write}x{1 KB, 128 KB, 1 MB,

300000 : : : : : : ; : 8000

Bytes Read ——
Bytes Write 1 7000
250000 Bytes per Read  +
Bytes per Write 1 6000
200000 1 5000 OQ
2 150000 1 4000 =&
2 g
4 >
100000 3000 &
2000
50000 1000
0 0
0 9 G B 4 <
Y % Y % Y, 9000 %, %,
Figure 8: blastall I/0 traffic profile
1.2e+06 : : : : 120000
Bytes Read ——
Bytes Write
le+06 | Bytes per Read - 100000
Bytes per Write
800000 1 80000 o,
o)
3] 5]
£ 600000 | 1 60000 &
) 8
=,
400000 1 40000 A
200000 1 20000
0 0

0 500 1000 1500 2000 2500 3000
System Call Sequence

Figure 9: merge 1/0 traffic profile

16 MB}x{1, 2, 4, 8, 16, 32, 64, 128, 256} clients. The total
number of performance test jobs is 630, and the whole test
takes about 2.2 million core hours on the BG/P. Note that
we used a shell script as our test framework to represent a
typical parallel scripting application, and that we ran on a
multiuser system, not a dedicated system. Therefore, we are
not measuring the peak performance of the I/O system, but
rather the performance that parallel scripting applications
experience when sharing the filesystem with other users.

3.3 Metadata Operation Throughput

We measure file creation throughput by asking all GPFS
clients to create independent files in one single directory.
In all test cases, the total number of file creations is 8,192.
Using a similar strategy, we measure file open throughput
by creating 8,192 files in one directory, then ask all GPFS
clients to query the files, with each file only queried once.

Figure 10 shows the scaling of throughput of file creation
and open in a single directory. Both creation and open
throughput increase linearly to eight GPFS clients. Then
the rate of increase slows down from eight clients to 32
clients. Above 32 clients, throughput starts to slow down.
The reason for the creation slowdown is that the GPFS
metadata server uses a locking mechanism to resolve con-
current create operations in one directory, and 64 and more



clients triggers the concurrency bottleneck of the locking
mechanism. The query slowdown is due to a concurrency
bottleneck of the tested GPFS deployment.
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Figure 10: Metadata Operation Throughput

3.4 1-to-1 Read Performance

In the 1-to-1 read benchmark measurement, we first create
8,192 files with size of {1 KB, 128 KB, 1 MB, 16 MB} in
one directory. Then we start a number of GPFS clients to
simultaneously read those files. With N clients, each client
reads 8,192/N distinct files by copying the file from GPFS
to its local RAM disk. Figures 11 and 12 show the 1-to-1
read operation throughput and data bandwidth respectively.
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Figure 11: 1-to-1 Read Operation Throughput

In Figure 11, the 1 KB and 128 KB 1-to-1 reads are domi-
nated by latency, as seen by the closeness of the two curves.
For these two reads, the throughput increases up to 32 GPFS
clients, then starts to slow down. This slowdown is similar
to that of the open operation in §3.3, and is likely due to
the same cause. As the cost of the small file read is mostly
that of determining the file’s location by querying the meta-
data server, the throughput of read is about 25% lower than
that of open due to the extra overhead that comes from
the actual data transfer. 1 MB reads reach the throughput
bound at a larger scale than 1 KB and 128 KB reads be-
cause the data transfer has less traffic congestion than open
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Figure 12: 1-to-1 Read Data Bandwidth

does. With larger file size, the 16 MB reads have not become
throughput bound with 256 clients.

Peak GPFS read performance has been documented at
62,000 MB/s [4]. Figure 12 (log scale) does not manage
to reach this limit; the peak bandwidth for 16 MB read
is 6,880 MB/s. For the bandwidth dominated 1 MB and
16 MB read tests, the performance scales up nearly linearly
from one to 128 clients, then the 1 MB read reaches its
ceiling, while 16 MB read performance is still increasing.

3.5 N-to-1 Read Performance

Here, we first create a single file with size {1 KB, 128 KB,
1 MB, 16 MB}. Then we let a number {1, 2, 4, 8, 16, 32,
64, 128, and 256} of GPFS clients concurrently read the file.
With N clients, each client will read the same file 8,192/N
times.

Figures 13 and 14 show the N-to-1 read operation through-
put and data bandwidth respectively. 1 KB and 128 KB
reads reach peak throughput with 64 clients, which is twice
as many clients as where the 1-to-1 read throughput peaks.
One potential explanation of the improvement is metadata
caching in the GPFS client, where when file is read multi-
ple times, the client does not have to re-query the metadata
server. However, with 128 clients, the performance is bound
by the read concurrency of the shared file system.
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Figure 13: N-to-1 Read Operation Throughput
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3.6 Write Performance

We run the write performance benchmark in the space of
{1 KB, 128 KB, 1 MB, 16 MB}x{1, 2, 4, 8, 16, 32, 64,
128, 256} clients. To focus only on write performance, we
initially create 8,192 empty files in one directory, and then
each client writes to a mutually exclusive group of the files.
With N clients, each client writes to 8,192/N distinct files.

As shown in Figure 15, the 1 KB, 128 KB, and 1 MB
writes reach the operations throughput bound at 32 clients,
which is identical to the peak of 1-to-1 reads. In Figure 16,
the 16 MB write reaches the data bandwidth bound at 64
clients, yielding a data bandwidth of 3,497 MB/s.

One interesting observation of Figures 11 and 15 is that
the operations throughput is independent of the file size.
This suggests that 256 clients limit the throughput of GPFS
to approximately 470 Op/s for read and 180 Op/s for write.
This is a significant characteristic and a limiting factor of
the envelope.
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Figure 15: Write Operation Throughput

3.7 Envelope Summary

We have defined the MTC envelope as eight performance
metrics of file open throughput, file creation throughput, 1-
to-1 read throughput, 1-to-1 read bandwidth, N-to-1 read
throughput, N-to-1 read bandwidth, write throughput, and
write bandwidth. We show the envelope on 1, 2, 4, 8, 16, 32,
64, 128, and 256 clients as a Kiviat diagram in Figure 17.
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Figure 16: Write Data Bandwidth

This shows the performance on each metric relative to that
on one client.

Scaling up to 16 clients shows generally good performance.
Overall, most of the metrics reach a peak at some number
of clients and then decrease, with the exception of N-to-1
read bandwidth, which has not yet reached a peak using
256 clients. The throughput metrics, for both metadata and
transfer, appear to have the worst scalability. 1-to-1 read
bandwidth and write bandwidth appear to have reached
their peak with 256 clients. Our characterization of the
MTC envelope indicates that while the BG/P I/O system
can sustain a very large 1/O data bandwidth, its peaks in
operation throughput per second remain a limiter of MTC
application performance.

4. PUTTING THE APPLICATION IN THE
ENVELOPE

So far, we have measured the performance metric suite
at multiple scales, which is enough to characterize the I/O
performance of the system for running parallel scripting ap-
plications. Now, we examine predicting I/O time consump-
tion and I/O performance bounding factors for the parallel
scripting applications themselves.

4.1 1/0 Time Consumption

To ease the work of predicting I/O time consumption of
parallel scripting applications on the shared filesystem, we
first example write on GPFS.

Assume one stage of an application has N tasks, with each
writing one output file of size D bytes at the same time,
and that the stage runs on a group of computing resources
that has C shared filesystem clients. To evaluate the I/O
consumption of this stage, we first find the I/O bandwidth
B, throughput T,, and metadata creation throughput 7.,
at scale C. All writes will come as [N/C] rounds. In each
round, metadata creation takes C/T),, time, and the write
time consumption is C//T when throughput dominates or
C x D/B when bandwidth dominates. So the write time
consumption can be approximately expressed as

Time = [N/C| % (C/Tn + C % D/B) (1)
when the write is bandwidth bound, or as

Time = [N/C] % (C/Tpm + C/T.) (2)
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client.

when the write is throughput bound. Higher throughput and
bandwidth are desired for parallel scripting applications in
order to reduce runtime.

We plot two heat maps of concurrent write bandwidth and
throughput with our benchmark numbers and Equations 1
and 2. Figure 18 shows the bandwidth distribution with var-
ious file size on multiple scales, while Figure 19 shows the
throughput distribution with the same input as Figure 18.
When used to predict write performance, the two heat maps
yield the same predictions, however, in Figure 18, the dif-
ference among the file size of 1 KB, 128 KB and 1 MB is
barely discernible.

For a read workload, we denote N as the number of tasks,
with each reading a file of size D1 bytes at the same time and
a common input file of size Dy shared among all tasks. On
a group of computing resources that has C shared filesystem
clients, the MTC envelope delivers 1-to-1 read bandwidth of
B1, throughput of T3, N-to-1 read bandwidth of By and
throughput of T. The read time consumption can be ap-
proximately expressed as

Time = [N/C] * (max(C/T1,C x D1/B1)+

maX(C/TN,C*DN/BN)) (3)
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Figure 18: Heat map of write bandwidth

We do not compile the 1-to-1 read and N-to-1 read per-
formance into heat maps because the benchmark numbers
are measured directly. Users can refer to Figures 11, 12, 13,
14 for numbers to project read time consumption.

Using such information, a parallel scripting application
programmer could obtain a rough picture of how much time
was taken by I/O in the execution. For example, assuming
we have an application stage with 8,192 tasks, each writ-
ing one output file of size 16 MB, and running on 64 GPFS



Table 4: Application I/0O Performance Decomposition and Bounding Factor(s) Classification (bw=bandwidth,

tput=throughput) on 32 GPFS Clients

Montage BLAST CyberShake
mProject  mDiff mFit  mBack | formatdb blastall merge | extract seis peakGM
Metadata 69.7% 82.0% 233% 24.1% 1.7% 6.0% 1.9% 3.1% 1.4% 82.4%
Read I/0 30.3% 18.0% 76.7% 75.9% | 98.3% 94.0% 98.1% | 96.9% 98.6% 17.6%
Bound. Fact. bw tput bw bw bw bw bw bw bw tput
Metadata 37.4% 52.0% 52.0% 37.7"% 11.9% 52.0% 40.8% 4.7% 52.0% 52.0%
Write I/0 62.6% 48.0%  48.0% 62.3% | 88.1% 48.0% 59.2% | 95.3%  48.0% 48.0%
Bound. Fact. bw tput tput bw bw tput bw bw tput tput
800 determine if the I/O is bandwidth-bound or throughput-
16MB 700@ bound. If we perform the same calculation on the MTC
S 600% envelope on 64 clients, we would see a dramatical decrease
2 IMB 50075’ of metadata and I/O throughput, which is the concurrency
'EE 128KB ;88%‘; bounding factor of the applications’ I/O behavior.
E 200 E We will C(?ntinue analysis of application performance within
KB . 1005 the constraints of the envelope in our future work.
0 4.3 1/0 Performance Prediction

1 2 4 8 16 32 64 128 256
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Figure 19: Heat map of write throughput

clients, then the write consumption can be estimated by the
following steps. 16 MB writes are bandwidth dominated, so
we look at the bandwidth heat map, and find that the band-
width is about 3500 MB/s. The write has 8,192*16 MB of
data to write, so it will take 8,192*16/3,500 = 37 seconds.
Alternatively, if a programmer with a requirement for the
I/0O time might first determine what file size and scale com-
binations for the I/O time are valid on the shared file system,
and then could choose from the candidate combinations.

4.2 1/0O Performance Bounding Factors

To begin to investigate the I/O performance bounding fac-
tor(s) of the example applications, we map the applications’
I/O behavior to the MTC envelope that we measured on
GPFS on 32 clients. Table 4 illustrates the time consump-
tion decomposition and bounding factors for each applica-
tions stage. The calculations were done based on the profile
of each application and Equations 1 and 2. The MTC en-
velope on 32 GPF'S clients shows file creation throughput of
1,367 Op/s, file open throughput of 1,974 Op/s, 1-to-1 read
performance of 1,624 reads/s and 2,123 MB/s, N-to-1 read
performance of 3,489 reads/s and 4,118 MB/s, and write
performance of 1,481 writes/s and 3,429 MB/s.

Given an application stage profile, we compute the the
read I/O consumption as the difference between the time
consumption of reads and metadata operations. Write I/0O
consumption can be measured directly as shown in §3.6. We
also compute the time consumption numbers from Equa-
tions 1 and 2 and determine which is larger to decide if an
operation is bandwidth bound or throughput bound.

We see from the read time distribution for mProject and
mDiff in Table 4 that for small file I/O, even though the
metadata processing takes more time than the I/O, we can

To predict the I/O performance of a given application or
a stage of the application, we define two models.

e Coarse model: The coarse model maps the I/O traffic
of an application stage to the peak metadata oper-
ation throughput and read/write bandwidth (MB/s)
and operation throughput (Op/s) at a given scale.

e Fine model: Instead of just looking at the peak mea-
sured performance in the MTC envelope, the fine model
takes into account the impact of the I/O file sizes on
I/O bandwidth and throughput. We assume the band-
width and throughput distribution along files sizes are
linear. For example, Figure 12 shows the bandwidth
of 1-to-1 read for file sizes of 1 KB, 128 KB, 1 MB,
and 16 MB. The 1-to-1 read bandwidth for a file size
of 8.5 MB is calculated as the average of the band-
width of 1 MB and 16 MB. For multiple input and
output files, we only compute the metadata operation
time once, as the subsequent metadata operation con-
gestion will be reduced by the diffusion of operations
in those rounds, due to delays in the earlier round(s).
The bandwidth factor is computed as the sum of time
used for each file.

We compare the coarse model, the fine model, and the mea-
sured application I/O performance for three sample stages:
Montage:mBack, CyberShake:peakGM and Montage:mProj-
ectPP. These represent an I/O bandwidth-bound workload,
a metadata throughput-bound workload, and a mixed bound-
ing factor workload. We run 1024 tasks of each stage on 32
GPFS clients.

Table 5 shows the errors predicted by the coarse and fine
models. We show the average of five runs of each application
on 32 GPFS clients. Both the coarse and fine prediction of
mProjectPP and mBack are based on the file access band-
width, while the predictions of peakGM are based on the
file access throughput because the file sizes in this stage are
small.

We observe that the fine model predicts the stages with
bandwidth-dominant read performance (mProjectPP and



Table 5: Application I/O Performance Prediction
Error on 32 GPFS Clients

Coarse Fine

Stage Phase | Time Model Model

(secs) Error Error

. Input 83.0 -60.9% +0.4%
mProjectPP s e T 878 | $18.7% | +45.7%
Input 116 -29.7% +17.5%
mBack Output | 48.6 | +32.0% | 156.6%
Input 12.2 | +65.9% | +69.5%

peakGM e T M. | 18.0% | +8.0%

mBack) well, while the coarse model predicts bandwidth-
dominant write well. So our assumption in the fine model
that the read bandwidth is linear with file size appears cor-
rect. The similar assumption in the fine model for write
bandwidth fails. But the assumption in the coarse model of
rounding the file size to the closest bandwidth of file size of
{1 KB, 16 KB, 1 MB, 16 MB} seems to work well.

We also observe that the fine model predicts read better
than write for bandwidth-dominant I/O. The reason is that
in our runs, the first round of reads starts at the same time
and the model correctly predicts that. On the other hand,
write concurrency overhead is somewhat neutralized by the
preceding reads, so we have more concurrency overhead in
our models than actually exists.

A third observation is that for throughput-dominant reads
in peakGM, neither model works well, as this stage is meta-
data operation bound, and it is more sensitive to the current
workload of the machine. While the models seem to reason-
ably predict the throughput-dominant write in peakGM, the
measured performance’s standard deviation is 11.7 seconds
with the average time consumption of 42.7 seconds.

S. RELATED WORK

Examples of alternative approaches to profiling the I/0O
performance of applications on specific systems include work
on general HPC applications [30] and on FLASH [28]. In
comparison, our approach can be used to predict I/O per-
formance on different systems.

Previous benchmark include MADbench2 [6], which orig-
inated from the cosmic microwave background application
MADCAP [5]. It measures the system’s unique (one-file-
per-process) and shared file (one-file-for-all-processes) access
performance. It could also measure the improvement of the
asynchronous I/O with computation and I/O overlapped on
the timeline. However, it does not work well for applica-
tions that are metadata-intensive. The Effective I/O Bench-
mark [23] is a purely synthetic benchmark with predefined
configurations that runs for a limited time to output a score
as the performance metric. It is difficult to understand real
application performance using the Effective I/O Benchmark.
The SPIObench [31] and PIORAW [33] benchmarks are syn-
thetic benchmarks to measure the concurrent read/write op-
erations on unique files. They can measure the 1-to-1 read
performance, but similarly to MADbench2, they overlook
metadata-intensive applications. The IOR [13] benchmark
is a highly-parameterized HPC storage benchmark, and pre-
vious work [29] has used it to model and predict the HPC
application I/O performance with specified parameters com-

binations. With slightly modification, the IOR benchmark
can be used a standard test framework for MTC envelope.
It also comes with a limitation of MPI-dependency.

Many research groups have observed that metadata through-
put is a bottleneck in today’s shared file system. GIGA+ [21,
20] explores the idea of scalable directories in a hierarchi-
cal layout, and the work has been migrated in OrangeFS
(PVFS) [8]. ZHT [16] distributes the metadata storage fully
over storage servers, which could significantly improve the
metadata operation throughput. Our previous AME work [36]
has a similar metadata server design, but it is has a simpli-
fied implementation without the notion of directories. The
work of Data Diffusion [27] and AMFS [35] explore the ben-
efit of addressing data locality in parallel scripting appli-
cations. In the context of file system benchmarking, Data
Diffusion [27] and AMFS [35] enhance the read/write band-
width by redirecting the 1/O to local storage. A similar
approach has been implemented in HDFS [7] to facilitate
MapReduce applications. The performance improvements
to the applications from scalable metadata access and local-
ity can be quantitatively profiled with the MTC envelope.

6. CONCLUSION

In this paper, we first studied the I/O behavior of parallel
scripting applications that use a shared filesystem abstrac-
tion for inter-task communication on large scale comput-
ers. Then we defined the MTC envelope as a set of eight
performance metrics: metadata query throughput, meta-
data creation throughput, 1-to-1 read throughput, 1-to-1
read bandwidth, N-to-1 read throughput, N-to-1 read band-
width, write throughput, and write bandwidth. We also
showed that the MTC envelope is sufficient to characterize
the I/O behavior of parallel scripting application. Taking
GPFS on BG/P as an example, we benchmarked the MTC
envelope of GPFS at multiple scales, and studied its scal-
ability. We believe the envelope model may be useful as
a guide for aggregating many smaller operations into fewer
larger ones, replacing shared filesystem accesses with scal-
able local filesystem usage, and spreading shared filesystem
accesses in a manner that reduces locking and other forms of
resource contention. Finally, we presented a way to convert
performance measurements into heat maps that can guide
programmers to make better use of existing shared filesys-
tems for parallel scripting applications.

We believe this work can also benefit other types of appli-
cations such as HPC and MapReduce, as the same approach
can be applied to those applications and hardware-software
stacks. We are in the era of Big Data where many interest-
ing applications are inevitably data-intensive, so such shared
filesystem studies in other communities will help them use
the current I/O and storage in a more efficient way.
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