
 Editorial Manager(tm) for Cluster Computing
 Manuscript Draft

Manuscript Number:

Title: Middleware Support for Many-Task Computing

Article Type: HPDC Special Issue

Section/Category:

Keywords: many-task computing; MTC; high-throughput computing; resource management; Falkon;
Swift

Corresponding Author: Dr. Ioan Raicu, Ph.D.

Corresponding Author's Institution: Northwestern University

First Author: Ioan Raicu, PhD

Order of Authors: Ioan Raicu, PhD; Ioan Raicu, Ph.D.; Ian Foster, PhD; Mike Wilde, BS; Zhao Zhang, MS;
Kamil Iskra, PhD; Pete Beckman, PhD; Yong Zhao, PhD; Alex Szalay, PhD; Alok Choudhary, PhD; Philip
Little, MS; Christopher Moretti, MS; Amitabh Chaudhary, PhD; Douglas Thain, PhD

Manuscript Region of Origin: UNITED STATES

Abstract: Many-task computing aims to bridge the gap between two computing paradigms, high
throughput computing and high performance computing. Many-task computing denotes high-
performance computations comprising multiple distinct activities, coupled via file system operations.
The aggregate number of tasks, quantity of computing, and volumes of data may be extremely large.
Traditional techniques found in production systems in the scientific community to support many-task
computing do not scale to today's largest systems, due to issues in local resource manager scalability
and granularity, efficient utilization of the raw hardware, long wait queue times, and shared/parallel
file system contention and scalability. To address these limitations, we adopted a "top-down" approach
to building a middleware called Falkon, to support the most demanding many-task computing
applications at the largest scales. Falkon (Fast and Light-weight tasK executiON framework) integrates
(1) multi-level scheduling to enable dynamic resource provisioning and minimize wait queue times, (2)
a streamlined task dispatcher able to achieve orders-of-magnitude higher task dispatch rates than
conventional schedulers, and (3) data diffusion which performs data caching and uses a data-aware
scheduler to co-locate computational and storage resources. Micro-benchmarks have shown Falkon to
achieve over 15K+ tasks/sec throughputs, scale to hundreds of thousands of processors and to millions
of queued tasks, and execute billions of tasks per day. Data diffusion has also shown to improve
applications scalability and performance, with its ability to achieve hundreds of Gb/s I/O rates on
modest sized clusters, with Tb/s I/O rates on the horizon. Falkon has shown orders of magnitude
improvements in performance and scalability than traditional approaches to resource management
across many diverse workloads and applications at scales of billions of tasks on hundreds of thousands
of processors across clusters, specialized systems, Grids, and supercomputers. Falkon's performance
and scalability have enabled a new class of applications called Many-Task Computing to operate at
previously so-believed impossible scales with high efficiency.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

Middleware Support for Many-Task Computing

Ioan Raicu • Ian Foster • Mike Wilde • Zhao Zhang • Kamil Iskra •
Pete Beckman • Yong Zhao • Alex Szalay • Alok Choudhary •
Philip Little • Christopher Moretti • Amitabh Chaudhary • Douglas Thain

Received: November 6th, 2009

Abstract Many-task computing aims to bridge
the gap between two computing paradigms, high
throughput computing and high performance
computing. Many-task computing denotes high-
performance computations comprising multiple

distinct activities, coupled via file system operations.
The aggregate number of tasks, quantity of
computing, and volumes of data may be extremely
large. Traditional techniques found in production
systems in the scientific community to support
many-task computing do not scale to today’s largest
systems, due to issues in local resource manager
scalability and granularity, efficient utilization of the
raw hardware, long wait queue times, and
shared/parallel file system contention and
scalability. To address these limitations, we adopted
a “top-down” approach to building a middleware
called Falkon, to support the most demanding many-
task computing applications at the largest scales.
Falkon (Fast and Light-weight tasK executiON
framework) integrates (1) multi-level scheduling to
enable dynamic resource provisioning and minimize
wait queue times, (2) a streamlined task dispatcher
able to achieve orders-of-magnitude higher task
dispatch rates than conventional schedulers, and (3)
data diffusion which performs data caching and uses
a data-aware scheduler to co-locate computational
and storage resources. Micro-benchmarks have
shown Falkon to achieve over 15K+ tasks/sec
throughputs, scale to hundreds of thousands of
processors and to millions of queued tasks, and
execute billions of tasks per day. Data diffusion has
also shown to improve applications scalability and
performance, with its ability to achieve hundreds of
Gb/s I/O rates on modest sized clusters, with Tb/s
I/O rates on the horizon. Falkon has shown orders of
magnitude improvements in performance and
scalability than traditional approaches to resource
management across many diverse workloads and
applications at scales of billions of tasks on
hundreds of thousands of processors across clusters,
specialized systems, Grids, and supercomputers.
Falkon’s performance and scalability have enabled a
new class of applications called Many-Task
Computing to operate at previously so-believed
impossible scales with high efficiency.

1. Introduction
We want to enable the use of large-scale distributed
systems for task-parallel applications, which are
linked into useful workflows through the looser

I. Raicu*
Northwestern University, Evanston IL, USA
email: iraicu@eecs.northwestern.edu

I. Raicu
email: iraicu@eecs.northwestern.edu

I. Foster • M. Wilde • K. Iskra, P. Beckman
University of Chicago, Chicago IL, USA
Argonne National Laboratory, Argonne IL, USA

I. Foster
email: foster@anl.gov

M. Wilde
email: wilde@mcs.anl.gov

K. Iskra
email: iskra@mcs.anl.gov

P. Beckman
email: beckman@mcs.anl.gov

Z. Zhang
University of Chicago, Chicago IL, USA
email: zhaozhang@uchicago.edu

Y. Zhao
Microsoft, Redmond WA, USA
email: yozha@microsoft.com

A. Szalay
John Hopkins University, Baltimore MD, USA
email: szalay@jhu.edu

A. Choudhary
Northwestern University, Evanston IL, USA
email: choudhar@eecs.northwestern.edu

P. Little • C. Moretti • A. Chaudhary • D. Thain
University of Notre Dame, Notre Dame IN, USA

P. Little
email: plittle1@nd.edu

C. Moretti
email: cmoretti@cse.nd.edu

A. Chaudhary
email: achaudha@cse.nd.edu

D. Thain
email: dthain@nd.edu

Manuscript
Click here to download Manuscript: MTC_middleware_v19.docx Click here to view linked References

http://www.editorialmanager.com/clus/download.aspx?id=7728&guid=3dd26b97-b626-4402-9476-da66a2122cec&scheme=1
http://www.editorialmanager.com/clus/viewRCResults.aspx?pdf=1&docID=309&rev=0&fileID=7728&msid={B6B4073A-8E34-42D7-84AA-8F20C2D8398F}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

task-coupling model of passing data via files
between dependent tasks. This potentially larger
class of task-parallel applications is precluded from
leveraging the increasing power of modern parallel
systems such as supercomputers (e.g. IBM Blue
Gene/L [1] and Blue Gene/P [2]) due to the lack of
efficient support in those systems for the “scripting”
programming model [3]. With advances in e-Science
and the growing complexity of scientific analyses,
more scientists and researchers rely on various
forms of scripting to automate end-to-end
application processes involving task coordination,
provenance tracking, and bookkeeping. Their
approaches are typically based on a model of loosely
coupled computation, in which data is exchanged
among tasks via files, databases or XML documents,
or a combination of these. Vast increases in data
volume combined with the growing complexity of
data analysis procedures and algorithms have
rendered traditional manual exploration unfavorable
as compared with modern high performance
computing processes automated by scientific
workflow systems. [4]

The problem space can be partitioned into four main
categories (see Figure 1). 1) At the low end of the
spectrum (low number of tasks and small input size),
we have tightly coupled Message Passing Interface
(MPI) applications (white). 2) As the data size
increases, we move into the analytics category, such
as data mining and analysis (blue); MapReduce [5]
is an example for this category. 3) Keeping data size
modest, but increasing the number of tasks moves us
into the loosely coupled applications involving many
tasks (yellow); Swift/Falkon [6, 7] and
Pegasus/DAGMan [8] are examples of this category.
4) Finally, the combination of both many tasks and
large datasets moves us into the data-intensive
Many-Task Computing [9] category (green);
examples are Swift/Falkon and data diffusion [10],
Dryad [11], and Sawzall [12].

Figure 1: Problem types with respect to data size

and number of tasks

High-performance computing can be classified in
the category denoted by the white area. High-

throughput computing [13] can be classified as a
subset of the category denoted by the yellow area.
Many-Task Computing [9] can be classified in the
categories denoted by the yellow and green areas.
This paper focuses on techniques to enable the
support of many-task computing, including data-
intensive many-task computing.

Clusters and Grids [14, 15] have been the preferred
platform for loosely coupled applications that have
been traditionally part of the high throughput
computing class of applications, which are managed
and executed through workflow systems or parallel
programming systems. Various properties of a new
emerging applications, such as large number of tasks
(i.e. millions or more), relatively short per task
execution times (i.e. seconds to minutes long), and
data intensive tasks (i.e. tens of MB of I/O per CPU
second of compute) have led to the definition of a
new class of applications called Many-Task
Computing [9]. MTC emphasizes on using larger
number of computing resources over short periods
of time to accomplish many computational tasks,
where the primary metrics are in seconds (e.g.,
FLOPS, tasks/sec, IO/sec), while HTC requires large
amounts of computing for long periods of time with
the primary metrics being operations per month [13].
MTC applications are composed of many tasks (both
independent and dependent) that can be individually
scheduled on many computing resources across
multiple administrative boundaries to achieve some
larger application goal.

MTC denotes high-performance computations
comprising multiple distinct activities, coupled via
file system operations. Tasks may be small or large,
uniprocessor or multiprocessor, compute-intensive
or data-intensive. The set of tasks may be static or
dynamic, homogeneous or heterogeneous, loosely
coupled or tightly coupled. The aggregate number of
tasks, quantity of computing, and volumes of data
may be extremely large. The new term MTC draws
attention to the many computations that are
heterogeneous but not “happily” parallel.

Within the science domain, the data that needs to be
processed generally grows faster than computational
resources and their speed. The scientific community
is facing an imminent flood of data expected from
the next generation of experiments, simulations,
sensors and satellites. Scientists are now attempting
calculations requiring orders of magnitude more
computing and communication than was possible
only a few years ago. Moreover, in many currently
planned and future experiments, they are also
planning to generate several orders of magnitude
more data than has been collected in the entire
human history [16]. Many applications in the
scientific computing generally use a shared
infrastructure such as TeraGrid [17] and Open
Science Grid [18], where data movement relies on
shared or parallel file systems. The rate of increase
in the number of processors per system is

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

outgrowing the rate of performance increase of
parallel file systems, which requires rethinking
existing data management techniques.
Unfortunately, this trend will continue, as advanced
multi-core and many-core processors will increase
the number of processor cores one to two orders of
magnitude over the next decade. [4] We believe that
data locality is critical to the successful and efficient
use of large distributed systems for data-intensive
applications [19, 20] in the face of a growing gap
between compute power and storage performance.
Large scale data management needs to be a primary
objective for any MTC-enabled middleware, to
ensure data movement is minimized by intelligent
data-aware scheduling.

Over the past year and a half, Falkon [21, 7] has
seen wide deployment and usage across a variety of
systems, from the TeraGrid [17], the SiCortex [22],
the IBM Blue Gene/P [23], and the Sun
Constellation [17]. Figure 2 shows plot of Falkon
across these various systems from December 2007 –
April 2009. Each blue dot represents a 60 second
average of allocated processors, and the black line
denotes the number of completed tasks. In summary,
there were 166,305 peak concurrent processors, with
2 million CPU hours consumed and 173 million
tasks for an average task execution time of 64
seconds and a standard deviation of 486 seconds.
Many of the results presented here are represented in
Figure 2, although some applications were run prior
to the history log repository being instantiated in late
2007.

Figure 2: December 2007 – April 2009 plot of

Falkon across various systems (ANL/UC TG 316
processor cluster, SiCortex 5832 processor machine,
IBM Blue Gene/P 4K and 160K processor machines,

and the Sun Constellation with 62K processors)

This paper is a culmination of a collection of papers
[7, 9, 10, 19, 24, 25, 21, 26, 27, 28] dating back to
2006, and includes a deeper analysis of previous
results as well as some new results. This paper
explores the issues in building the middleware to
support the many-task computing paradigm on large
scale distributed systems. We have designed and
implemented this middleware – Falkon – to enable
the support of many-task computing on clusters,
grids and supercomputers. Falkon addresses

shortcomings in traditional resource management
systems that support high-throughput and high-
performance computing that are not efficient in
supporting many-task computing. Falkon was
designed to enable the rapid and efficient execution
of many tasks on large scale systems, and integrate
novel data management capabilities to extend data
intensive applications scalability beyond that of
traditional parallel file systems.

2. Related Work
As high throughput computing (HTC) is a subset of
MTC, it is worth mentioning the various efforts in
enabling HTC on large scale systems. Some of these
systems are Condor [29, 30], Portable Batch System
(PBS) [31], Load Sharing Facility (LSF) [32], SGE
[33], MapReduce [5], Hadoop [34], and BOINC
[35]. Full-featured local resource managers (LRMs)
such as Condor, PBS, LSF, and SGE support client
specification of resource requirements, data staging,
process migration, check-pointing, accounting, and
daemon fault recovery. Condor and glide-ins [36]
are the original tools to enable HTC, but their
emphasis on robustness and recoverability limits
their efficiency for MTC applications in large-scale
systems. We found that relaxing some constraints
(e.g. recoverability) from the middleware and
encouraging the end applications to implement these
constraints has enabled significant improvements in
middleware performance and efficiency at large
scale, between two to four orders of magnitude
better performance.

Multi-level scheduling has been applied at the OS
level [37, 38] to provide faster scheduling for groups
of tasks for a specific user or purpose by employing
an overlay that does lightweight scheduling within a
heavier-weight container of resources: e.g., threads
within a process or pre-allocated thread group. Frey
and his colleagues pioneered the application of
resource provisioning to clusters via their work on
Condor “glide-ins” [36]. Requests to a batch
scheduler (submitted, for example, via Globus
GRAM) create Condor “startd” processes, which
then register with a Condor resource manager that
runs independently of the batch scheduler. Others
have also used this technique. For example, Mehta et
al. [39] embed a Condor pool in a batch-scheduled
cluster, while MyCluster [40] creates “personal
clusters” running Condor or SGE. Such “virtual
clusters” can be dedicated to a single workload;
thus, Singh et al. find, in a simulation study [41], a
reduction of about 50% in completion time.
However, because they rely on heavyweight
schedulers to dispatch work to the virtual cluster, the
per-task dispatch time remains high, and hence the
wait queue times remain significantly higher than in
the ideal case due to the schedulers’ inability to push
work out faster.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

The BOINC “volunteer computing” system [35, 42]
is known to scale well to large number of compute
resources, but lacks support for data intensive
applications due to the nature of the wide area
network deployment BOINC typically has, as well
as lack of support for “black box” applications.
Although the performance of BOINC is significantly
better than traditional resource managers, it is still
one to two orders of magnitude slower than our
proposed solution, running at about 100 jobs/sec
compared to up to 3000 jobs/sec in our proposed
solution.

On the IBM Blue Gene supercomputer, various
works [43, 44] have leveraged the HTC-mode [45]
support in Cobalt [46] scheduling system. These
works have aimed at integrating their solution as
much as possible in Cobalt; however, it is not clear
that the current implementations will be able to
support the largest MTC applications at the largest
scales, as their performance is still one to two orders
of magnitude slower than our proposed solution.
Furthermore, these works only focus on compute
resource management, and ignore data management
altogether.

MapReduce (including Hadoop) is typically applied
to a data model consisting of name/value pairs,
processed at the programming language level. Its
strengths are in its ability to spread the processing of
a large dataset to thousands of processors with
minimal expertise in distributed systems; however it
often involves the development of custom filtering
scripts and does not support “black box” application
execution as is commonly found in MTC or HTC
applications.

Swift [6, 47, 48] and Falkon [7] have been used to
execute MTC applications on clusters, multi-site
Grids (e.g., Open Science Grid [18], TeraGrid [17]),
specialized large machines (SiCortex [22]), and
supercomputers (e.g., Blue Gene/P [2]). Swift
enables scientific workflows through a data-flow-
based functional parallel programming model. It is a
parallel scripting tool for rapid and reliable
specification, execution, and management of large-
scale science and engineering workflows. The
runtime system in Swift relies on the CoG Karajan
[49] workflow engine for efficient scheduling and
load balancing, and it integrates with the Falkon
light-weight task execution dispatcher. In this paper,
we will focus on Falkon, the middleware we have
designed and implemented to enable MTC on a wide
range of systems from the average cluster to the
largest supercomputers, and will also provide some
details of the Swift system.

In summary, our proposed work in light-weight task
dispatching and data management offers many
orders of magnitude better performance and
scalability than traditional resource management
techniques, and it is changing the types of
applications that can efficiently execute on large

distributed resources. Once the capability of light-
weight task dispatching and scalable data
management was available, new applications
emerged that needed to run at ever increasing scales.
We have achieved these improvements by narrowing
the focus of the resource management by not
supporting various expensive features, and by
relaxing other constraints from the resource
management framework effectively pushing them to
the application or the clients.

3. The Falkon Framework
To address the limitations of existing resource
management systems in supporting many-task
computing, we adopted a “top-down” approach to
building the middleware – Falkon – to support the
most demanding many-task computing applications
at the largest scales. Falkon integrates (1) multi-level
scheduling to enable dynamic resource provisioning
and minimize wait queue times, (2) a streamlined
task dispatcher able to achieve order-of-magnitude
higher task dispatch rates than conventional
schedulers, and (3) data diffusion which performs
data caching and uses a data-aware scheduler to co-
locate computational and storage resources. This
section will describe each of these in detail.

3.1 Architecture Overview
Falkon consists of a dispatcher, a provisioner, and
zero or more executors. The dispatcher accepts tasks
from clients and implements the dispatch policy.
The provisioner implements the resource acquisition
policy. Executors run tasks received from the
dispatcher. Components communicate via Web
Services (WS) messages, except that notifications
are performed via a custom TCP-based protocol.
The notification mechanism is implemented over
TCP because when we first implemented the core
Falkon components using GT3.9.5, the Globus
Toolkit did not support brokered WS notifications.
Starting with GT4.0.5, there is support for brokered
notifications.

The dispatcher implements the factory/instance
pattern, providing a create instance operation to
allow a clean separation among different clients. To
access the dispatcher, a client first requests creation
of a new instance, for which is returned a unique
endpoint reference (EPR). The client then uses that
EPR to submit tasks, monitor progress (or wait for
notifications), retrieve results, and (finally) destroy
the instance.

A client “submit” request takes an array of tasks,
each with working directory, command to execute,
arguments, and environment variables. It returns an
array of outputs, each with the task that was run, its
return code, and optional output strings (STDOUT
and STDERR contents). A shared notification
engine among all the different queues is used to
notify executors that work is available for pick up.
This engine maintains a queue, on which a pool of

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

threads operate to send out notifications. The GT4
container also has a pool of threads that handle WS
messages. Profiling shows that most dispatcher time
is spent communicating (WS calls, notifications).
Increasing the number of threads allows the service
to scale effectively on newer multicore and
multiprocessor systems.

The dispatcher runs within a Globus Toolkit 4 (GT4)
[50] WS container, which provides authentication,
message integrity, and message encryption
mechanisms, via transport-level, conversation-level,
or message-level security [51].

The provisioner is responsible for creating and
destroying executors. It is initialized by the
dispatcher with information about the state to be
monitored and how to access it; the rule(s) under
which the provisioner should create/destroy
executors; the location of the executor code; bounds
on the number of executors to be created; bounds on
the time for which executors should be created; and
the allowed idle time before executors are destroyed.
The provisioner periodically monitors dispatcher
state and determines whether to create additional
executors, and if so, how many, and for how long.
The provisioner supports both static and dynamic
provisioning. Dynamic provisioning is supported
through GRAM4 [52]. Static provisioning is
supported by directly interfacing with LRMs; Falkon
currently supports PBS, SGE and Cobalt.

A new executor registers with the dispatcher. Work
is then supplied as follows: the dispatcher notifies
the executor when work is available; the executor
requests work; the dispatcher returns the task(s); the
executor executes the supplied task(s) and returns
the exit code and the optional standard output/error
strings; and the dispatcher acknowledges delivery.

Communication costs can be reduced by task
bundling between client and dispatcher and/or
dispatcher and executors. In the latter case, problems
can arise if task sizes vary and one executor gets
assigned many large tasks, although that problem
can be addressed by having clients assign each task
an estimated runtime. Another technique that can
reduce message exchanges is to piggy-back new task
dispatches when acknowledging result delivery. [7]
Using both task bundling and piggy-backing, we can
reduce the average number of message exchanges
per task to be close to zero, by increasing the bundle
size. In practice, we find that performance degrades
for bundle sizes of greater than 300 tasks.

Figure 3 shows the Falkon architecture, including
both the data management and data-aware scheduler
components. Individual executors manage their own
caches, using local eviction policies (e.g. LRU [53]),
and communicate changes in cache content to the
dispatcher. The scheduler sends tasks to compute
nodes, along with the necessary information about
where to find related input data. Initially, each
executor fetches needed data from remote persistent

storage. Subsequent accesses to the same data results
in executors fetching data from other peer executors
if the data is already cached elsewhere. The current
implementation runs a GridFTP server [54] at each
executor, which allows other executors to read data
from its cache. This scheduling information are only
hints, as remote cache state can change frequently
and is not guaranteed to be 100% in sync with the
global index. In the event that a data item is not
found at any of the known cached locations, it
attempts to retrieve the item from persistent storage;
if this also fails, the respective task fails. In Figure 3,
the black dotted lines represent the scheduler
sending the task to the compute nodes, along with
the necessary information about where to find input
data. The red thick solid lines represent the ability
for each executor to get data from remote persistent
storage. The blue thin solid lines represent the
ability for each storage resource to obtain cached
data from another peer executor. We assume data
follows the normal pattern found in scientific
computing, which is to write-once/read-many (the
same assumption as HDFS makes in the Hadoop
system [34]). Thus, we avoid complicated and
expensive cache coherence schemes other parallel
file systems enforce.

To support data-aware scheduling, we implement a
centralized index within the dispatcher that records
the location of every cached data object; this is
similar to the centralized NameNode in Hadoop’s
HDFS [34]. This index is maintained loosely
coherent with the contents of the executor’s caches
via periodic update messages generated by the
executors. In addition, each executor maintains a
local index to record the location of its cached data
objects. We believe that this hybrid architecture
provides a good balance between latency to the data
and good scalability. In previous work [10, 24], we
offered a deeper analysis in the difference between a
centralized index and a distributed one, and under
what conditions a distributed index is preferred.

Figure 3: Architecture overview of Falkon extended

with data diffusion (data management and data-
aware scheduler)

We implement four dispatch policies: first-available
(FA), max-cache-hit (MCH), max-compute-util
(MCU), and good-cache-compute (GCC).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

The FA policy ignores data location information
when selecting an executor for a task; it simply
chooses the first available executor, and provides the
executor with no information concerning the
location of data objects needed by the task. Thus, the
executor must fetch all data needed by a task from
persistent storage on every access. This policy is
used for all experiments that do not use data
diffusion.

The MCH policy uses information about data
location to dispatch each task to the executor with
the largest amount of data needed by that task. If
that executor is busy, task dispatch is delayed until
the executor becomes available. This strategy is
expected to reduce data movement operations
compared to first-cache-available and max-compute-
util, but may lead to load imbalances where
processor utilization will be sub optimal, if nodes
frequently join and leave.

The MCU policy leverages data location
information, attempting to maximize resource
utilization even at the potential higher cost of data
movement. It sends a task to an available executor,
preferring executors with the most needed data
locally.

The GCC policy is a hybrid MCH/MCU policy. The
GCC policy sets a threshold on the minimum
processor utilization to decide when to use MCH or
MCU. We define processor utilization to be the
number of processors with active tasks divided by
the total number of processors allocated. MCU used
a threshold of 100%, as it tried to keep all allocated
processors utilized. We find that relaxing this
threshold even slightly (e.g., 90%) works well in
practice as it keeps processor utilization high and it
gives the scheduler flexibility to improve cache hit
rates significantly when compared to MCU alone.

3.2 Distributing the Falkon Architecture
Significant engineering efforts were needed to get
Falkon to work on systems such as the Blue Gene/P
efficiently at large scale. In order to improve
Falkon’s performance and scalability, we developed
alternate implementation and distributed the Falkon
architecture.

Alternative Implementations: Performance depends
critically on the behavior of our task dispatch
mechanisms. The initial Falkon implementation was
100% Java, and made use of GT4 Java WS-Core to
handle Web Services communications. [50] The
Java-only implementation works well in typical
Linux clusters and Grids, but the lack of Java on the
Blue Gene/L, Blue Gene/P, and SiCortex prompted
us to re-implement some functionality in C. Table 1
has a summary of the differences between the two
implementations.

In order to keep the implementation simple that
would work on these specialized systems, we used a
simple TCP-based protocol (to replace the prior WS-
based protocol), internally between the dispatcher

and the executor. We implemented a new
component called TCPCore to handle the TCP-based
communication protocol. TCPCore is a component
to manage a pool of threads that lives in the same
JVM as the Falkon dispatcher, and uses in-memory
notifications and shared objects for communication.
For performance reasons, we implemented persistent
TCP sockets so connections can be reused across
tasks.

Table 1: Feature comparison between the Java and
C Executor implementations

Description Java C
Robustness high Medium

Security
GSITransport,

GSIConversation,
GSIMessageLevel

None
could

support SSL
Communication

Protocol
WS-based TCP-based

Error Recovery yes Yes
Lifetime

Management
yes No

Concurrent
Tasks

yes No

Push/Pull
Model

PUSH
notification based PULL

Firewall no yes

NAT / Private
Networks

no in general
yes in certain

cases
yes

Persistent
Sockets

no - GT4.0
yes - GT4.2

yes

Performance
Medium~High

600~3700 tasks/s

High
1700~3200

tasks/s

Scalability High ~ 54K CPUs Medium ~
10K CPUs

Portability medium
high

(needs
recompile)

Data Caching yes no

Distributed Falkon Architecture: The original
Falkon architecture [7] use a single dispatcher
(running on one login node) to manage many
executors (running on compute nodes). The
architecture of the Blue Gene/P is hierarchical, in
which there are 10 login nodes, 640 I/O nodes, and
40K compute nodes. This led us to the offloading of
the dispatcher from one login node (quad-core
2.5GHz PPC) to the many I/O nodes (quad-core
0.85GHz PPC); Figure 4 shows the distribution of
components on different parts of the Blue Gene/P.

Experiments show that a single dispatcher, when
running on modern node with 4 to 8 cores at 2GHz+
and 2GB+ of memory, can handle thousands of
tasks/sec and tens of thousands of executors.
However, as we ramped up our experiments to 160K
processors (each executor running on one
processor), the centralized design began to show its
limitations. One limitation (for scalability) was the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

fact that our implementation maintained persistent
sockets to all executors (two sockets per executor).
With the current implementation, we had trouble
scaling a single dispatcher to 160K executors (320K
sockets). Another motivation for distributing the
dispatcher was to reduce the load on login nodes.
The system administrators of the Blue Gene/P did
not approve of the high system utilization (both
memory and processors) of a login node for
extended periods of time when we were running
intense workloads.

Figure 4: 3-Tier Architecture Overview

Our change in architecture from a centralized one to
a distributed one allowed each dispatcher to manage
a disjoint set of 256 executors, without requiring any
inter-dispatcher communication. We did however
had to implement additional client-side functionality
to load balance task submission across many
dispatchers, and to ensure that it did not overcommit
tasks that could cause some dispatchers to be
underutilized while others queued up tasks. Our new
architecture allowed Falkon to scale to 160K
processors while minimizing the load on the login
nodes.

Reliability Issues at Large Scale: We discuss
reliability only briefly here, to explain how our
approach addresses this critical requirement. The
Blue Gene/L has a mean-time-to-failure (MTBF) of
10 days [1], which can pose challenges for long-
running applications. When running loosely coupled
applications via Swift and Falkon, the failure of a
single node only affects the task(s) that were being
executed by the failed node at the time of the failure.
I/O node failures only affect their respective psets
(256 processors); these failures are identified by
heartbeat messages or communication failures.

Falkon has mechanisms to identify specific errors,
and act upon them with specific actions. Most errors
are generally passed back up to the application
(Swift) to deal with them, but other (known) errors
can be handled by Falkon directly by rescheduling
the tasks. Falkon can suspend offending nodes if too
many tasks fail in a short period of time. Swift
maintains persistent state that allows it to restart a
parallel application script from the point of failure,
re-executing only uncompleted tasks. There is no
need for explicit check-pointing as is the case with
MPI applications; check-pointing occurs inherently
with every task that completes and is communicated
back to Swift.

3.3 Monitoring
In order to make visualizing the state of Falkon
easier, we have formatted various Falkon logs to be
printed in a specific format that can be read by the
GKrellm [55] monitoring GUI to display real time
state information. Figure 5 shows 1 million tasks
(sleep 60) executed on 160K processors on the IBM
Blue Gene/P supercomputer.

Figure 5: Monitoring via GKrellm while running

1M tasks on 160K processors

Overall, it took 453 seconds to complete 1M tasks,
with an ideal time being 420 seconds, achieving
93% efficiency. To place this benchmark in context,
of what an achievement it is to be able to run 1
million tasks in 7.5 minutes, others [56] have
managed to run 1 million jobs in 6 months. Grant it
that the 1 million jobs they referred to in [56] were
real computations with real data, and not just “sleep
60” tasks, due to the large overheads of scheduling
jobs through Condor [29] and other production local
resource managers, running 1 million jobs, no matter
how short they are, will likely still take on the order
of days.

3.4 Ease of Use
The Swift parallel programming system already
supported a wide variety of resource managers, such
as GRAM, PBS, Condor, and others, through a
concept called providers. Implementing a new
provider specific for Falkon was a simple one day
effort, consuming 840 lines of code. This is
comparable to GRAM2 provider (850 lines),
GRAM4 provider (517 lines), and the Condor
provider (575 lines). For applications that are

FalkonProvisioner FalkonDispatcherFalkonDispatcherI/O NodesLinux Compute Nodes ZeptOS
Global Parallel File System (GPFS)

Localized In-memory Shared File SystemsLocalized In-memory Shared File Systems

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

already batch-scheduler aware, interfacing with
Falkon does not pose a significant challenge. There
is also a wide array of command line clients and
scripts that can allow an application to interface with
Falkon through loosely coupled scripts, rather than a
JAVA API using web services.

4. Performance Evaluation
We use micro-benchmarks to determine
performance characteristics and potential
bottlenecks on systems with many cores. This
section explores the dispatch performance, how it
compares with other traditional LRMs, efficiency,
and data diffusion effectiveness.

4.1 Falkon Task Dispatch Performance
One key component to achieving high utilization of
large-scale systems is achieving high task dispatch
and execution rates. In previous work [7] we
reported that Falkon with a Java Executor and WS-
based communication protocol achieves 487
tasks/sec in a Linux cluster (Argonne/Univ. of
Chicago) with 256 CPUs, where each task was a
“sleep 0” task with no I/O. We repeated the peak
throughput experiment on a variety of systems
(Argonne/Univ. of Chicago Linux cluster, SiCortex,
and Blue Gene/P) for both versions of the executor
(Java and C, WS-based and TCP-based respectively)
at significantly larger scales (see Figure 6). We
achieved 604 tasks/sec and 2534 tasks/sec for the
Java and C Executors respectively (Linux cluster, 1
dispatcher, 200 CPUs), 3186 tasks/sec (SiCortex, 1
dispatcher, 5760 CPUs), 1758 tasks/sec (Blue
Gene/P, 1 dispatcher, 4096 CPUs), and 3071
tasks/sec (Blue Gene/P, 640 dispatchers, 163840
CPUs). Note that the SiCortex and Blue Gene/P only
support the C Executors. The throughput numbers
that indicate “1 dispatcher” are tests done with the
original centralized dispatcher running on a login
node. The last throughput of 3071 tasks/sec was
achieved with the dispatchers distributed over 640
I/O nodes, each managing 256 processors.

Figure 6: Task dispatch and execution throughput

for trivial tasks with no I/O (sleep 0)

To better understand the performance achieved for
different workloads, we measured performance as a
function of task length. We made measurements in

two different configurations: 1) 1 dispatcher up to
2K processors, and 2) N/256 dispatchers on up to
N=160K processors, with 1 dispatcher managing
256 processors. We varied the task lengths from 1
second to 256 seconds (using sleep tasks with no
I/O), and ran weak scaling workloads ranging from
2K tasks to 1M tasks (7 tasks per core).

Figure 7 investigates the effects of efficiency of 1
dispatcher running on a faster login node (quad core
2.5GHz PPC) at relatively small scales. With 4
second tasks, we can get high efficiency (95%+)
across the board (up to the measured 2K processors).
Figure 8 shows the efficiency with the distributed
dispatchers on the slower I/O nodes (quad core 850
MHz PPC) at larger scales. It is interesting to notice
that the same 4 second tasks that offered high
efficiency in the single dispatcher configuration now
achieves relatively poor efficiency, starting at 65%
and dropping to 7% at 160K processors. This is due
to both the extra costs associated with running the
dispatcher on slower hardware, and the increasing
need for high throughputs at large scales. If we
consider the 160K processor case, based on our
experiments, we need tasks to be at least 64 seconds
long to get 90%+ efficiency. Adding I/O to each
task will further increase the minimum task length in
order to achieve high efficiency.

Figure 7: Efficiency graph for the Blue Gene/P for 1

to 2048 processors and task lengths from 1 to 32
seconds using a single dispatcher on a login node

Figure 8: Efficiency graph for the Blue Gene/P for
256 to 160K processors and task lengths ranging

from 1 to 256 seconds using N dispatchers with each
dispatcher running on a separate I/O node

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

ANL/UC, Java
200 CPUs
1 service

ANL/UC, C
200 CPUs
1 service

SiCortex, C
5760 CPUs

1 service

BlueGene/P, C
4096 CPUs

1 service

BlueGene/P, C
163840 CPUs
640 services

604

2534

3186

1758

3071

T
h

ro
u

gh
p

u
t (

ta
sk

s/
se

c)

Executor Implementation and Various Systems

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

Number of Processors

E
ff

ic
ie

n
cy

32 seconds
16 seconds
8 seconds
4 seconds
2 seconds
1 second

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

256 1024 4096 16384 65536 163840
Number of Processors

E
ff

ic
ie

n
cy

256 seconds
128 seconds
64 seconds
32 seconds
16 seconds
8 seconds
4 seconds
2 seconds
1 second

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

To summarize: distributing the Falkon dispatcher
from a single (fast) login node to many (slow) I/O
nodes has both advantages and disadvantages. The
advantage is that we achieve good scalability to
160K processors, but at the cost of significantly
worse efficiency at small scales (less than 4K
processors) and short tasks (1 to 8 seconds). We
believe both approaches are valid, depending on the
application task execution distribution and scale of
the application.

The experiments presented in Figure 6, Figure 7, and
Figure 8 were conducted using one million tasks per
run. We thought it would be worthwhile to conduct a
larger scale experiment, with one billion tasks, to
validate that the Falkon service can reliably run
under heavy stress for prolonged periods of time.
Figure 9 depicts the endurance test running one
billion tasks (sleep 0) on 128 processors in a Linux
cluster, which took 19.2 hours to complete. We ran
the distributed version of the Falkon dispatcher
using four instances on an 8-core server using
bundling of 100, which allowed the aggregate
throughput to be four times higher than that reported
in Figure 6. Over the course of the experiment, the
throughput decreased from 17K+ tasks/sec to just
over 15K+ tasks/sec, with an average throughput of
15.6K tasks/sec. The loss in throughput is attributed
to a memory leak in the client, which was making
the free heap size smaller and smaller, and hence
invoking the garbage collection more frequently. We
estimated that 1.5 billion tasks would have been
sufficient to exhaust the 1.5GB heap we had
allocated the client, and the client would have likely
failed at that point. Nevertheless, 1.5 billion tasks is
larger than any application parameter space we have
today, and is many orders of magnitude larger than
what other systems support. The following sub-
section attempts to compare and contrast the
throughputs achieved between Falkon and other
local resource managers.

Figure 9: Endurance test with 1B tasks on 128 CPUs

in ANL/UC cluster

4.2 Comparing Falkon to Other LRMs
and Solutions
It is instructive to compare with task execution rates
achieved by other local resource managers. In
previous work [7], we measured Condor (v6.7.2, via

MyCluster [40]) and PBS (v2.1.8) performance in a
Linux environment (the same environment where we
test Falkon and achieved 2534 tasks/sec
throughputs). The throughputs we measured for PBS
was 0.45 tasks/sec and for Condor was 0.49
tasks/sec; other studies in the literature have
measured Condor’s performance as high as 22
tasks/sec in a research prototype called Condor J2
[30].

We also tested the performance of Cobalt (the Blue
Gene/P’s LRM), which yielded a throughput of
0.037 tasks/sec; recall that Cobalt also lacks the
support for single processor tasks, unless HTC-mode
[45] is used. HTC-mode means that the termination
of a process does not release the allocated resource
and initiates a node reboot, after which the launcher
program is used to launch the next application.
There is still some management (which we
implemented as part of Falkon) that needs to happen
on the compute nodes, as exit codes from previous
application invocations need to be persisted across
reboots (e.g. to shared file system), sent back to the
client, and have the ability to launch an arbitrary
application from the launcher program. Running
Falkon on the BlueGene/L in conjunction with
Cobalt’s HTC-mode support yielded a 0.29 task/sec
throughput. The low throughput was attributed to the
fact that nodes had to be rebooted across jobs, and
node bootup was serialized in the Cobalt scheduler.
We only investigated the performance of HTC-mode
on the Blue Gene/L at small scales, as we realized
that it will not be sufficient for MTC applications
due to the high overhead of node reboots across
tasks; we did not pursue it at larger scales, or on the
Blue Gene/P.

Cope et al. [43] also explored a similar space as we
have, leveraging HTC-mode [45] support in Cobalt
on the Blue Gene/L. The authors had various
experiments, which we tried to replicate for
comparison reasons. The authors measured an
overhead of 46.4±21.2 seconds for running 60
second tasks on 1 pset of 64 processors on the Blue
Gene/L. In a similar experiment in running 64
second tasks on 1 pset of 256 processors on the Blue
Gene/P, we achieve an overhead of 1.2±2.8 seconds,
more than an order of magnitude better. Another
comparison is the task startup time, which they
measured to be on average about 25 seconds, but
sometimes as high as 45 seconds; the startup times
for tasks in our system are 0.8±2.7 seconds. Another
comparison is average task load time by number of
simultaneously submitted tasks on a single pset and
executable image size of 8MB. The authors reported
an average of 40~80 seconds for 32 simultaneous
tasks on 32 compute nodes on the Blue Gene/L (1
pset, 64 CPUs). We measured our overheads of
executing an 8MB binary to be 9.5±3.1 seconds on
64 compute nodes on the Blue Gene/P (1 pset, 256
CPUs).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

Finally, Peter’s et al. from IBM also recently
published some performance numbers on the HTC-
mode native support in Cobalt [44], which shows a
similar one order of magnitude difference between
HTC-mode on Blue Gene/L and our Falkon support
for MTC workloads on the Blue Gene/P. For
example, the authors reported a workload of 32K
tasks on 8K processors and 32 dispatchers take
182.85 seconds to complete (an overhead of 5.58ms
per task), but the same workload on the same
number of processors using Falkon completed in
30.31 seconds with 32 dispatchers (an overhead of
0.92ms per task). Note that a similar workload of
1M tasks on 160K processors run by Falkon can be
completed in as little as 368 seconds (0.35ms per
task overheads).

4.3 Data Diffusion Performance
We measured the performance of the data-aware
scheduler on various workloads, both with static and
dynamic resource provisioning, and ran experiments
on the ANL/UC TeraGrid [58] (up to 100 nodes, 200
processors). The Falkon service ran on an 8-core
Xeon@2.33GHz, 2GB RAM, Java 1.5, 100Mb/s
network, and 2 ms latency to the executors. The
persistent storage was GPFS [59] with <1ms latency
to executors.

We investigate three diverse workloads:
Monotonically-Increasing (MI) and All-Pairs (AP).
We use the MI workload to explore the dynamic
resource provisioning support in data diffusion, and
the various scheduling policies and cache sizes. We
use the AP workload to compare data diffusion with
active storage [60].

4.3.1 Data-Aware Scheduler Performance
In order to understand the performance of the data-
aware scheduler, we developed several micro-
benchmarks to test scheduler performance. We used
the FA policy that performed no I/O as the baseline
scheduler, and tested the various scheduling policies.
We measured overall achieved throughput in terms
of scheduling decisions per second and the
breakdown of where time was spent inside the
Falkon service. We conducted our experiments
using 32 nodes; our workload consisted of 250K
tasks, where each task accessed a random file
(uniform distribution) from a dataset of 10K files of
1B in size each. We use files of 1 byte to measure
the scheduling time and cache hit rates with minimal
impact from the actual I/O performance of persistent
storage and local disk. We compare the FA policy
using no I/O (sleep 0), FA policy using GPFS, MCU
policy, MCH policy, and GCC policy. The
scheduling window size was set to 100X the number
of nodes, or 3200. We also used 0.8 as the CPU
utilization threshold in the GCC policy to determine
when to switch between the MCH and MCU
policies. Figure 10 shows the scheduler performance
under different scheduling policies.

We see the throughput in terms of scheduling
decisions per second range between 2981/sec (for
FA without I/O) to as low as 1322/sec (for MCH).
Note that for the FA policy, the cost of
communication is significantly larger than the rest of
the costs combined, including scheduling. The
scheduling is quite inexpensive for this policy as it
simply load balances across all workers. However,
we see that with the data-aware policies, the
scheduling costs (red and light blue areas) are
significant.

Figure 10: Data-aware scheduler performance and
code profiling for the various scheduling policies

4.3.2 Monotonically Increasing Workload
We investigated the performance of the FA, MCH,
MCU, and GCC policies, while also analyzing cache
size effects by varying node cache size (1GB to
4GB). The MI workload has a high I/O to compute
ratio (10MB:10ms). The dataset is 100GB large
(10K x 10MB files). Each task reads one file chosen
at random (uniform distribution) from the dataset,
and computes for 10ms. The arrival rate is initially 1
task/sec and is increased by a factor of 1.3 every 60
seconds to a maximum of 1000 tasks/sec. The
function varies arrival rate A from 1 to 1000 in 24
distinct intervals makes up 250K tasks and spans
1415 seconds; we chose a maximum arrival rate of
1000 tasks/sec as that was within the limits of the
data-aware scheduler, and offered large aggregate
I/O requirements at modest scales. This workload
aims to explore a varying arrival rate under a
systematic increase in task arrival rate, to explore
the data-aware scheduler’s ability to optimize data
locality with an increasing demand.

The baseline experiment (FA policy) ran each task
directly from GPFS, using dynamic resource
provisioning. Aggregate throughput matches
demand for arrival rates up to 59 tasks/sec, but
remains flat at an average of 4.4Gb/s beyond that.
The workload execution time was 5011 seconds,
yielding 28% efficiency (ideal being 1415 seconds).

We ran the same workload with data diffusion with
varying cache sizes per node (1GB to 4GB) using
the GCC policy, optimizing cache hits while keeping
processor utilization high (90%). The working set
was 100GB, and with a per-node cache size of 1GB,

0

1

2

3

4

5

first-
available

without I/O

first-
available
with I/O

max-
compute-util

max-cache-
hit

good-
cache-

compute

C
P

U
 T

im
e

p
er

 T
as

k
(m

s)

0

1000

2000

3000

4000

5000

Th
ro

u
gh

pu
t

(t
as

ks
/s

ec
)

Task Submit
Notification for Task Availability
Task Dispatch (data-aware scheduler)
Task Results (data-aware scheduler)
Notification for Task Results
WS Communication
Throughput (tasks/sec)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

1.5GB, 2GB, and 4GB caches, we get aggregate
cache sizes of 64GB, 96GB, 128GB, and 256GB.
The 1GB and 1.5GB caches cannot fit the working
set in cache, while the 2GB and 4GB cache can.

For the GCC policy with 1GB caches, throughput
keeps up with demand better than the FA policy, up
to 101 tasks/sec arrival rates (up from 59), at which
point the throughput reached an average of 5.2Gb/s.
Once the working set caching reaches a steady state,
the throughput reaches 6.9Gb/s. The overall cache
hit rate was 31%, resulting in a 57% higher
throughput than GPFS. The workload execution
time is reduced to 3762 seconds (from 5011
seconds), with 38% efficiency.

Increasing the cache size to 2GB (128GB
aggregate), the aggregate throughput is close to the
demand (up to the peak of 80Gb/s) for the entire
experiment. We attribute this good performance to
the ability to cache the entire working set and then
schedule tasks to the nodes that have required data
to achieve cache hit rates approaching 98%. With an
execution time of 1436 seconds, efficiency was
98.5%.

Both the MCH and MCU policies performed
significantly worse than GCC, due to them being too
rigid and causing either unnecessary transfers over
the network, or leaving processors idle. However,
both MCH and MCU still managed to outperform
the baseline FA policy.

Figure 11 summarizes the aggregate I/O throughput
measured in each of the experiments conducted. We
present in each case first, as the solid bars, the
average throughput achieved from start to finish,
partitioned among local cache, remote cache, and
GPFS, and second, as a black line, the “peak”
(actually 99th percentile) throughput achieved during
the execution. The second metric is interesting
because of the progressive increase in job
submission rate: it may be viewed as a measure of
how far a particular method can go in keeping up
with user demands.

We see that the FA policy had the lowest average
throughput of 4Gb/s, compared to between 5.3Gb/s
and 13.9Gb/s for data diffusion (GCC, MCH, and
MCU with various cache sizes), and 14.1Gb/s for
the ideal case. In addition to having higher average
throughputs, data diffusion also achieved
significantly throughputs towards the end of the
experiment (the black bar) when the arrival rates are
highest, as high as 81Gb/s as opposed to 6Gb/s for
the FA policy.

Note also that GPFS file system load (the red
portion of the bars) is significantly lower with data
diffusion than for the GPFS-only experiments (FA);
in the worst case, with 1GB caches where the
working set did not fit in cache, the load on GPFS is
still high with 3.6Gb/s due to all the cache misses,
while FA tests had 4Gb/s load. However, as the
cache sizes increased and the working set fit in

cache, the load on GPFS became as low as 0.4Gb/s;
similarly, the network load was considerably lower,
with the highest values of 1.5Gb/s for the MCU
policy, and less than 1Gb/s for the other policies.

Figure 11: MI workload average and peak (99

percentile) throughput

The response time (see Figure 12) is probably one of
the most important metrics interactive applications.
Average Response Time (ARi) is the end-to-end time
from task submission to task completion notification
for task i; ARi = WQi+TKi+Di, where WQi is the
wait queue time, TKi is the task execution time, and
Di is the delivery time to deliver the result.

Figure 12: MI workload average response time

We see a significant different between the best data
diffusion response time (3.1 seconds per task) to the
worst data diffusion (1084 seconds) and the worst
GPFS (1870 seconds). That is over 500X difference
between the data diffusion GCC policy and the FA
policy response time. A principal factor influencing
the average response time is the time tasks spend in
the Falkon wait queue. In the worst (FA) case, the
queue length grew to over 200K tasks as the
allocated resources could not keep up with the
arrival rate. In contrast, the best (GCC with 4GB
caches) case only queued up 7K tasks at its peak.
The ability to keep the wait queue short allowed data
diffusion to keep average response times low (3.1
seconds), making it a better for interactive
workloads.

4.3.3 All-Pairs Workload Evaluation
In order to compare data diffusion with other related
work, we implemented a common workload called
All-Pairs (AP) [60]. This related work is part of the

80

6

12

73
81 81

21

46

0
2
4
6
8

10
12

14
16
18
20

Ideal FA GCC
1GB

GCC
1.5GB

GCC
2GB

GCC
4GB

MCH
4GB

MCU
4GB

T
h

ro
u

g
hp

u
t (

G
b

/s
)

Local Worker Caches (Gb/s)
Remote Worker Caches (Gb/s)
GPFS Throughput (Gb/s)

1569

1084

114
3.4 3.1

230 287

0

200

400

600

800

1000

1200

1400

1600

1800

FA GCC
1GB

GCC
1.5GB

GCC
2GB

GCC
4GB

MCH
4GB

MCU
4GB

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(s
ec

)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

Chirp [61] project. We call the All-Pairs use of
Chirp active storage. Chirp has several
contributions, such as delivering an implementation
that behaves like a file system and maintains most of
the semantics of a shared filesystem, and offers
efficient distribution of datasets via a spanning tree
making Chirp ideal in scenarios with a slow and
high latency data source. However, Chirp does not
address data-aware scheduling, so when used by All-
Pairs, it typically distributes an entire application
working data set to each compute node local disk
prior to the application running. This requirement
hinders active storage from scaling as well as data
diffusion, making large working sets that do not fit
on each compute node local disk difficult to handle,
and producing potentially unnecessary transfers of
data. Data diffusion only transfers the minimum data
needed per job.

Variations of the AP problem occur in many
applications. For example when we want to
understand the behavior of a new function F on sets
A and B, or to learn the covariance of sets A and B
on a standard inner product F. [60] The AP problem
is easy to express in terms of two nested for loops
over some parameter space. This regular structure
also enables the optimization of its data access
operations.

Thain et al [60] conducted experiments with
biometrics and data mining workloads using Chirp.
The most data-intensive workload was where each
function executed for 1 second to compare two
12MB items, for an I/O to compute ratio of
24MB:1000ms. At the largest scale (50 nodes and
500x500 problem size), we measured an efficiency
of 60% for the active storage implementation, and
3% for the demand paging (to be compared to the
GPFS performance we cite). These experiments
were conducted in a campus wide heterogeneous
cluster with nodes at risk for suspension, network
connectivity of 100Mb/s between nodes, and a
shared file system rated at 100Mb/s from which the
dataset needed to be transferred to the compute
nodes.

Due to differences in our testing environments, a
direct comparison is difficult, but we compute the
best case for active storage as defined in [60], and
compare the data diffusion performance against this
best case. Our environment has 100 nodes (200
processors) which are dedicated for the duration of
the allocation, with 1Gb/s network connectivity
between nodes, and a parallel file system (GPFS)
rated at 8Gb/s. For the 500x500 workload, data
diffusion achieves a throughput that is 80% of the
best case of all data accesses occurring to local disk
(see Figure 13).

We computed the best case for active storage to be
96%, however in practice, based on the efficiency of
the 50 node case from previous work [60] which
achieved 60% efficiency, we believe the 100 node

case would not perform significantly better than the
80% efficiency of data diffusion. Running the same
workload through Falkon directly against a parallel
file system achieves only 26% of the ideal
throughput.

In order to push data diffusion harder, we made the
workload 10X more data-intensive by reducing the
compute time from 1 second to 0.1 seconds, yielding
a I/O to compute ratio of 24MB:100ms. For this
workload, the throughput steadily increased to about
55Gb/s as more local cache hits occurred. We found
extremely few cache misses, which indicates the
high data locality of the AP workload. Data
diffusion achieved 75% efficiency. Active storage
and data diffusion transferred similar amounts of
data over the network (1536GB for active storage
and 1528GB for data diffusion with 0.1 sec compute
time and 1698GB with the 1 sec compute time
workload) and to/from the parallel file system
(12GB for active storage and 62GB and 34GB for
data diffusion for the 0.1 sec and 1 sec compute time
workloads respectively). The similarities in
bandwidth usage manifested themselves in similar
efficiencies, 75% for data diffusion and 91% for the
best case active storage.

In order to explore larger scale scenarios, we
emulated (ran the entire Falkon stack on 200
processors with multiple executors per processor and
emulated the data transfers) an IBM Blue Gene/P.
We configured the Blue Gene/P with 4096
processors, 2GB caches per node, 1Gb/s network
connectivity, and a 64Gb/s parallel file system. We
also increased the problem size to 1000x1000 (1M
tasks), and set the I/O to compute ratios to
24MB:4sec (each processor on the Blue Gene/P is
about ¼ the speed of those in our 100 node cluster).
On the emulated Blue Gene/P, we achieved an
efficiency of 86%. The throughputs steadily
increased up to 180Gb/s (of a theoretical upper
bound of 187Gb/s). It is possible that our emulation
was optimistic due to a simplistic modeling of the
Torus network, however it shows that the scheduler
scales well to 4K processors and is able to do 870
scheduling decisions per second to complete 1M
tasks in 1150 seconds. The best case active storage
yielded only 35% efficiency. We justify the lower
efficiency of the active storage due to the significant
time that is spent to distribute the 24GB dataset to
1K nodes via the spanning tree. Active storage used
12.3TB of network bandwidth (node-to-node
communication) and 24GB of parallel file system
bandwidth, while data diffusion used 4.7TB of
network bandwidth, and 384GB of parallel file
system bandwidth.

In reality, the best case active storage would require
cache sizes of at least 24GB to fit the 1000x1000
problem size, while the existing 2GB cache sizes for
the Blue Gene/P would only be sufficient for an
83X83 problem. This comparison is not only
emulated, but also hypothetical. Nevertheless, it is

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

interesting to see the significant difference in
efficiency between data diffusion and active storage
at this larger scale.

Figure 13: AP workload efficiency for 500x500

problem size on 200 processor cluster and
1000x1000 problem size on the Blue Gene/P

supercomputer with 4096 processors

Our comparison between data diffusion and active
storage fundamentally boils down to a comparison
of pushing data versus pulling data. The active
storage implementation pushes all the needed data
for a workload to all nodes via a spanning tree. With
data diffusion, nodes pull only the files immediately
needed for a task, creating an incremental spanning
forest (analogous to a spanning tree, but one that
supports cycles) at runtime that has links to both the
parent node and to any other arbitrary node or
persistent storage. We measured data diffusion to
perform comparably to active storage on our 200
processor cluster, but differences exist between the
two approaches. Data diffusion is more dependent
on having a well balanced persistent storage for the
amount of computing power, but can scale to larger
number of nodes due to the more selective nature of
data distribution. Furthermore, data diffusion only
needs to fit the per task working set in local caches,
rather than an entire workload working set as is the
case for active storage.

5. Applications
We have found many real applications that are a
better fit for MTC than HTC or HPC. Their
characteristics include having a large number of
small parallel jobs, a common pattern in many
scientific applications [6]. They also use files
(instead of messages, as in MPI) for intra-processor
communication, which tends to make these
applications data intensive.

We have identified various loosely coupled
applications from many domains as potential good
candidates that have these characteristics to show
examples of many-task computing applications.
These applications cover a wide range of domains,
from astronomy, physics, astrophysics,
pharmaceuticals, bioinformatics, biometrics,
neuroscience, medical imaging, chemistry, climate
modeling, economics, and data analytics. They often
involve many tasks, ranging from tens of thousands

to billions of tasks, and have a large variance of task
execution times ranging from hundreds of
milliseconds to hours. Furthermore, each task is
involved in multiple reads and writes to and from
files, which can range in size from kilobytes to
gigabytes. These characteristics made traditional
resource management techniques found in HTC
inefficient; also, although some of these applications
could be coded as HPC applications, due to the wide
variance of the arrival rate of tasks from many users,
an HPC implementation would also yield poor
utilization. Furthermore, the data intensive nature of
these applications can quickly saturate parallel file
systems at even modest computing scales.

Many of the applications presented in this section
were executed via the Swift parallel programming
system [6], which in turn used Falkon, although
some applications are coded directly against the
Falkon APIs. All these applications pose significant
challenges to traditional resource management found
in HPC and HTC, from both job management and
storage management perspective, and are in critical
need of MTC enabled middleware. This section
discusses these applications in more details, and
explores their performance scalability across a wide
range of systems, such as clusters, grids, and
supercomputers.

5.1 Functional Magnetic Resonance
Imaging
We note that for each volume, each individual task
in the fMRI [62] workflow required just a few
seconds on an ANL_TG cluster node, so it is quite
inefficient to schedule each job over GRAM and
PBS, since the overhead of GRAM job submission
and PBS resource allocation is large compared with
the short execution time. In Figure 14 we show the
execution time for different input data sizes for the
fMRI workflow.

We submitted from UC_SUBMIT to ANL_TG and
measured the turnaround time for the workflows. A
120-volume input (each volume consists of an image
file of around 200KB and a header file of a few
hundred bytes) involves 480 computations for the
four stages, whereas the 480-volume input has 1960
computation tasks. The GRAM+PBS submission
had low throughput although it could have
potentially used all the available nodes on the site
(62 nodes to be exact, as we only used the IA64
nodes). We can however bundle small jobs together
using the clustering mechanism in Swift, and we
show the execution time was reduced by up to 4
times (jobs were bundled into roughly 8 groups, as
the grouping of jobs was a dynamic process) with
GRAM and clustering, as the overhead was
amortized by the bundled jobs. The Falkon
execution service (with 8 worker nodes) however
further cuts down the execution time by 40-70%, as
each job was dispatched efficiently to the workers.
We carefully chose the bundle size for the clustering

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

500x500
200 CPUs

1 sec

500x500
200 CPUs

0.1 sec

1000x1000
4096 CPUs

4 sec

E
ff

ic
ie

nc
y

Best Case (active storage)
Falkon (data diffusion)
Best Case (parallel file system)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

so that the clustered jobs only required 8 nodes to
execute. This choice allowed us to compare
GRAM/Clustering against Falkon, which used 8
nodes, fairly. We also experimented with different
bundle sizes for the 120-volume run, but the overall
variations for groups of 4, 6 and 10 were not
significant (within 10% of the total execution time
for the 8 groups).

Figure 14 Execution Time for the fMRI Workflow

5.2 MolDyn (Chemistry Domain)
The goal of this molecular dynamics (MolDyn)
application is to optimize and automate the
computational workflow that can be used to generate
the necessary parameters and other input files for
calculating the solvation free energy of ligands, and
can also be extended to protein-ligand binding
energy. Solvation free energy is an important
quantity in Computational Chemistry with a variety
of applications, especially in drug discovery and
design. The accurate prediction of solvation free
energies of small molecules in water is still a largely
unsolved problem, which is mainly due to the
complex nature of the water-solute interactions. In
the study, a library of 244 neutral ligands is chosen
for free energy perturbation calculations. This
library contains compounds with various chemical
functional groups. Also, the absolute free energies of
solvation for these compounds are known
experimentally, and will serve as a tool to
benchmark our calculations. All the structures were
obtained from the NIST Chemistry WebBook

database [63].

Our experiment performed a 244 molecule run,
which is composed of 20497 jobs that should take
less than 957.3 CPU hours to complete; in practice,
it takes even less as some job executions are shared
between molecules. Figure 15 shows the resource
utilization in relation to Falkon queue length as the
experiment progressed. We see that as resources
were acquired (using the dynamic resource
provisioning, starting with 0 CPUs and ending with
216 CPUs at the peak), the CPU utilization was near
perfect (green means utilized, red mean idle) with
the exception of the end of the experiment as the last
few jobs completed (the last 43 seconds). Figure 15
shows the same information on a per task basis. The
entire experiment with the exception of the last 43

seconds consumed 866.33 CPU hours and wasted
0.09 CPU hours (99.98971% efficiency); if we
include the last 43 seconds as the experiment was
winding down, the workflow consumed 867.1 CPU
hours and it wasted 1.78 CPU hours, with a final
efficiency of 99.7949013%. The experiment
completed in 15091 seconds on a maximum of 216
processors, which results in a speedup of 206.9; note
the average number of processors for the entire
experiment was 207.26 CPUs, so the speedup of
206.9 reflects the 99.79% computed efficiency.

Figure 15: 244 Molecule MolDyn application;

summary view showing executor’s utilization in
relation to the Falkon wait queue length as

experiment time progressed

It is worth comparing the performance we obtained
for MolDyn using Falkon with that of MolDyn over
traditional GRAM/PBS. Due to reliability issues
(with GRAM and PBS) when submitting 20K jobs
over the course of hours, we were not able to
successfullyfinish the same 244 molecule run over
GRAM/PBS. We therefore tried to do some smaller
experiments, in the hopes that it would increase the
probability of doing a successful run. We tried
several runs with 50 molecules (4201 of jobs for the
50 molecule run, instead of 20497 jobs for the 244
molecule run); the best execution times we were
able to achieve for the 50 molecule runs with
GRAM/PBS (on the same testbed) took 25292
seconds. We achieved a speedup of only 25.3X
compared to 206.9X when using Falkon on the same
workflow and the same Grid site in a similar state.

We explain this drastic difference mostly due to the
typical job duration (~200 seconds) and the
submission rate throttling of 1/5 jobs per second;
with 200 second jobs, the most concurrent jobs we
could expect was 40. Increasing the submission rate
throttle resulted in GRAM/PBS gateway instability,
or even causing it to stop functioning. Furthermore,
each node was only using a single processor of the
dual processors available on the compute nodes due
to the local site PBS policy that allocates each job an
entire (dual processor) machine and does not allow
other jobs to run on allocated machines; it is left up
to the application to fully utilize the entire machine,
through multi-threading, or by invoking several
different jobs to run in parallel on the same machine.

1239

2510

3683

4808

456
866 992 1123

120
327

546 678

0

1000

2000

3000

4000

5000

6000

120 240 360 480
Input Data Size (Volumes)

T
im

e
(s

)

GRAM

GRAM/Clustering

Falkon

0

25

50

75

100

125

150

175

200

225

0 1800 3600 5400 7200 9000 10800 12600 14400

Time (sec)

E
xe

cu
to

rs

0

2500

5000

7500

10000

12500

15000

17500

20000

0 1800 3600 5400 7200 9000 10800 12600 14400

T
as

ks

num_all_workers
num_busy_workers
waitQ_length
delivered_tasks

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

This is a great example of the benefits of having the
flexibility to set queue policies per application,
which is impractical to do in real-world deployed
systems.

5.3 Molecular Dynamics: DOCK
The DOCK (molecular dynamics) application [64]
deals with virtual screening of core metabolic targets
against KEGG [65] compounds and drugs. DOCK6
addresses the problem of “docking” molecules to
each other. In general, “docking” is the
identification of the low-energy binding modes of a
small molecule, or ligand, within the active site of a
macromolecule, or receptor, whose structure is
known. A compound that interacts strongly with a
receptor (such as a protein molecule) associated with
a disease may inhibit its function and thus act as a
beneficial drug. Development of antibiotic and
anticancer drugs is a process fraught with dead ends.
Each dead end costs potentially millions of dollars,
wasted years and lives. Computational screening of
protein drug targets helps researchers prioritize
targets and determine leads for drug candidates.

The goal of this project was to 1) validate our ability
to approximate the binding mechanism of the
protein’s natural ligand (a.k.a compound that binds),
2) determine key interaction pairings of chemical
functional groups from different compounds with
the protein’s amino acid residues, 3) study the
correlation between a natural ligand that is similar to
other compounds and its binding affinity with the
protein’s binding pocket, and 4) prioritize the
proteins for further study.

Running a workload consisting of 934,803
molecules on 116K CPU cores using Falkon took
2.01 hours (see Figure 16). The per-task execution
time was quite varied with a minimum of 1 second,
a maximum of 5030 seconds, and a mean of
713±560 seconds. The two-hour run has a sustained
utilization of 99.6% (first 5700 seconds of
experiment) and an overall utilization of 78% (due
to the tail end of the experiment). Note that we had
allocated 128K CPUs, but only 116K CPUs
registered successfully and were available for the
application run; this was due to GPFS contention in
bootstrapping Falkon on 32 racks, and was fixed in
later large runs by moving the Falkon framework to
RAM before starting, and by pre-creating log
directories on GPFS to avoid lock contention. We
have made dozens on runs at 32 and 40 rack scales,
and we have not encountered this specific problem
since.

Despite the loosely coupled nature of this
application, our preliminary results show that the
DOCK application performs and scales well to
nearly full scale (116K of 160K CPUs). The
excellent scalability (99.7% efficiency when
compared to the same workload at 64K CPUs) was
achieved only after careful consideration was taken
to avoid the shared file system, which included the

caching of the multi-megabyte application binaries,
and the caching of 35MB of static input data that
would have otherwise been read from the shared file
system for each job. Note that each job still had
some minimal read and write operations to the
shared file system, but they were on the order of 10s
of KB (only at the start and end of computations),
with the majority of the computations being in the
100s of seconds, with an average of 713 seconds.

Figure 16: 934,803 DOCK5 runs on 118,784 CPU

cores on Blue Gene/P

These computations are, however, just the beginning
of a much larger computational pipeline that will
screen millions of compounds and tens of thousands
of proteins. The downstream stages use even more
computationally intensive and sophisticated
programs that provide for more accurate binding
affinities by allowing for the protein residues to be
flexible and the water molecules to be explicitly
modeled. Computational screening, which is
relatively inexpensive, cannot replace the wet lab
assays, but can significantly reduce the number of
dead ends by providing more qualified protein
targets and leads. To grasp the magnitude of this
application, the largest run we made of 934,803
tasks we performed represents only 0.09% of the
search space (1 billion runs) being considered by the
scientists we are working with; simple calculations
project a search over the entire parameter space to
need 20,938 CPU years, the equivalent of 48 days
on the 160K-core Blue Gene/P. This is a large
problem that cannot be solved in a reasonable
amount of time without a supercomputer scale
resource. Our loosely coupled approach holds great
promise for making this problem tractable and
manageable on today’s largest supercomputers.

5.4 Production Runs in Drug Design
We have been working extensively with a group of
researchers at the Midwest Center for Structural
Genomics at Argonne National Laboratory, who
have adopted Falkon and use it in their daily
production runs in modeling three-dimensional
protein structures towards drug design. Since
proteins with similar structures tend to behave in
similar ways, the team compares the modeled

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0
60

0
12

00
18

00
24

00
30

00
36

00
42

00
48

00
54

00
60

00
66

00
72

00

Time (sec)

T
as

ks
 C

o
m

p
le

te
d

N
u

m
b

er
 o

f
P

ro
ce

ss
o

rs

0

50

100

150

200

250

300

350

400

450

T
h

ro
u

g
h

p
u

t
(t

as
ks

/s
ec

)

Processors
Active Tasks
Tasks Completed
Throughput (tasks/sec)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

structures to known proteins in order to predict their
functions – a computationally intensive task.

As the Protein Data Bank expands exponentially, it
becomes more difficult to coax desktop machines to
do the types of analysis required. They turned to
Falkon as a way to utilize their existing software
applications on increasingly large machines, such as
the IBM Blue Gene/P supercomputer with 160K
processors. “Falkon has allowed us to ask bigger
questions and perform experiments on a scale never
before attempted — or even thought possible,” said
Andrew Binkowski, one of the main researchers
involved in performing the productions runs. “This
is the difference between comparing a newly
determined protein structure to a family of related
proteins versus comparing it to the entire protein
universe.” The team has done all of this using
existing software packages that were not designed
for high-throughput computing or many-task
computing, and used Falkon to coordinate and drive
the execution of many loosely-coupled computations
that are treated as “black boxes” without any
application-specific code modifications.

Over the course of 7 months (09/08 – 04/09), this
group managed to run 2 million production jobs
consuming 170K CPU hours with a minimum of
256 concurrent processors, an average of 8192
processors, and a maximum of 51200 concurrent
processors; the average per job execution time was
310 seconds, with a standard deviation of 335
seconds.

5.5 Economic Modeling: MARS
We also evaluated MARS (Macro Analysis of
Refinery Systems), an economic modeling
application for petroleum refining developed by D.
Hanson and J. Laitner at Argonne [66]. This
modeling code performs a fast but broad-based
simulation of the economic and environmental
parameters of petroleum refining, covering over 20
primary & secondary refinery processes. MARS
analyzes the processing stages for six grades of
crude oil (from low-sulfur light to high-sulfur very-
heavy and synthetic crude), as well as processes for
upgrading heavy oils and oil sands. It includes eight
major refinery products including gasoline, diesel
and jet fuel, and evaluates ranges of product shares.
It models the economic and environmental impacts
of the consumption of natural gas, the production
and use of hydrogen, and coal-to-liquids co-
production, and seeks to provide insights into how
refineries can become more efficient through the
capture of waste energy.

While MARS analyzes this large number of
processes and variables, it does so at a coarse level
without involving intensive numerics. It consists of
about 16K lines of C code, and can process many
internal model execution iterations, with a range
from 0.5 seconds (1 internal iteration) to hours
(many thousands of internal iterations) of Blue

Gene/P CPU time. Using the power of the Blue
Gene/P we can perform detailed multi-variable
parameter studies of the behavior of all aspects of
petroleum refining covered by MARS.

As a larger and more complex test, we performed a
2D parameter sweep to explore the sensitivity of the
investment required to maintain production capacity
over a 4-decade span on variations in the diesel
production yields from low sulfur light crude and
medium sulfur heavy crude oils. This mimics one
possible segment of the many complex multivariate
parameter studies that become possible with ample
computing power. A single MARS model execution
involves an application binary of 0.5MB, static input
data of 15KB, 2 floating point input variables and a
single floating point output variable. The average
micro-task execution time is 0.454 seconds. To scale
this efficiently, we performed task-batching of 600
model runs into a single task, yielding a workload
with 4KB of input and 4KB of output data, and an
average execution time of 271 seconds.

We executed a workload with 600 million model
runs (1M tasks) on 128K processors on the Blue
Gene/P (see Figure 17). The experiment consumed
9.3 CPU years and took 2483 seconds to complete.
Even at this large scale, the per task execution times
were quite deterministic with an average of 280±10
seconds; this means that most processors would start
and stop executing tasks at about the same time,
which produces the peaks in task completion rates
(blue line) that are as high as 4000 tasks/sec. As a
comparison, a 1 processor experiment using a small
part of the same workload had an average of
271±0.3 seconds; this yielded an efficiency of 97%
with a speedup of 126,892 (ideal speedup being
130,816).

Figure 17: MARS application (summary view) on
the Blue Gene/P; 1M tasks using 128K processor

cores

5.6 Large-scale Astronomy Application
Evaluation
We have implemented the AstroPortal [67, 68]
which performs the “stacking” of image cutouts
from different parts of the sky. This function can
help to statistically detect objects too faint
otherwise. Astronomical image collections usually

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

200000

400000

600000

800000

1000000

T
h

ro
u

g
h

pu
t (

ta
sk

s/
se

c)

Ta
sk

s
C

o
m

p
le

te
d

N
u

m
b

er
 o

f
P

ro
ce

ss
or

s

Time (sec)

Processors
Active Tasks
Tasks Completed
Throughput (tasks/sec)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

cover an area of sky several times (in different
wavebands, different times, etc). On the other hand,
there are large differences in the sensitivities of
different observations: objects detected in one band
are often too faint to be seen in another survey. In
such cases we still would like to see whether these
objects can be detected, even in a statistical fashion.
There has been a growing interest to re-project each
image to a common set of pixel planes, then stacking
images. The stacking improves the signal to noise,
and after coadding a large number of images, there
will be a detectable signal to measure the average
brightness/shape etc of these objects. While this has
been done for years manually for a small number of
pointing fields, performing this task on wide areas of
sky in a systematic way has not yet been done. It is
also expected that the detection of much fainter
sources (e.g., unusual objects such as transients) can
be obtained from stacked images than can be
detected in any individual image.

Astronomical surveys produce terabytes of data, and
contain millions of objects. For example, the SDSS
DR5 dataset has 320M objects in 9TB of images
[69]. To construct realistic workloads, we identified
the interesting objects (for a quasar search) from
SDSS DR5. The working set we constructed
consisted of 771,725 objects in 558,500 files, where
each file was either 2MB compressed or 6MB
uncompressed, resulting in a total of 1.1TB
compressed and 3.35TB uncompressed. From this
working set, various workloads were defined, with
certain data locality characteristics, varying from the
lowest locality of 1 (i.e., 1-1 mapping between
objects and files) to the highest locality of 30 (i.e.,
each file contained an average of 30 objects).

The AstroPortal was tested on the ANL/UC
TeraGrid site, with up to 128 processors. The
experiments investigate the performance and
scalability of the stacking code in four
configurations: 1) Data Diffusion (GZ), 2) Data
Diffusion (FIT), 3) GPFS (GZ), and 4) GPFS (FIT).
At the start of each experiment, all data is present
only on the persistent storage system (GPFS). For
data diffusion we use the MCU policy and cached
data on local nodes. For the GPFS experiments we
use the FA policy and perform no caching. GZ
indicates that the image data is in compressed format
while FIT indicates that the image data is
uncompressed.

Data diffusion can make its largest impact on larger
scale deployments, and hence we ran a series of
experiments to capture the performance at a larger
scale (128 processors) as we vary the data locality.
We investigated the data-aware scheduler’s ability to
exploit the data locality found in the various
workloads and its ability to direct tasks to computers
on which needed data was cached. We found that the
data-aware scheduler can get within 90% of the ideal
cache hit ratios in all cases.

The following experiment (Figure 18) offers a
detailed view of the performance (time per stack per
processor) of the stacking application as we vary the
locality. The last data point in each case represents
ideal performance when running on a single node.
Note that although the GPFS results show
improvements as locality increases, the results are
far from ideal. However, we see data diffusion gets
close to the ideal as locality increases beyond 10.

Figure 18: Performance of the stacking application

using 128 CPUs for workloads with data locality
ranging from 1 to 30, using data diffusion and GPFS

Using data diffusion, we achieve an aggregated I/O
throughput of 39Gb/s with high data locality, a
significantly higher rate than with GPFS, which tops
out at 4Gb/s. These results show the decreased load
on shared infrastructure (i.e., GPFS), which
ultimately gives data diffusion better scalability.

5.7 Montage (Astronomy Domain)
The Montage [70] workflow demonstrated similar
job execution time pattern as there were many small
jobs involved. We show in Figure 19 the comparison
of the workflow execution time using Swift with
clustering over GRAM, Swift over Falkon, and MPI.
The Montage application code we used for
clustering and Falkon are the same. The code for the
MPI runs is derived from the same set of source
code, with the addition of data partitioning and inter-
processor communication, so when multiple
processors are allocated, each would process part of
the input datasets, and combine the outputs if
necessary. The MPI execution was well balanced
across multiple processors, as the processing for
each image was similar and the image sizes did not
vary much. All three approaches needed to go over
PBS to request for computation nodes, we used 16
nodes for Falkon and MPI, and also configured the
clustering for GRAM to be around 16 groups.

The workflow had twelve stages, and we only show
the parallel stages and the total execution time in the
figure (the serial stages ran on a single node, and the
difference of running them across the three
approaches was small, so we only included them in
the total time for comparison purposes). The
workflow produced a 3x3 square degree mosaic
around galaxy M16, where there were about 440

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 1.38 2 3 4 5 10 20 30 Ideal

Locality

T
im

e
(m

s)
 p

er
 s

ta
ck

 p
er

 C
P

U

Data Diffusion (GZ)
Data Diffusion (FIT)
GPFS (GZ)
GPFS (FIT)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

input images (2MB each), and 2,200 overlappings
between them. There were two mAdd stages because
we divided the region into subsets, co-added images
in each subset, and then co-added the subsets
together into a final mosaic. We can observe that the
Falkon execution service performed close to the
MPI execution, which indicated that jobs were
dispatched efficiently to the 16 workers. The GRAM
execution with clustering enabled still did not
perform as well as the other two, mainly due to PBS
queuing overhead. It is worth noting that the last
stage mAdd was parallelized in the MPI version, but
not for the version for GRAM or Falkon, and hence
the big difference in execution time between Falkon
and MPI, and the source of the major difference in
the entire run between MPI and Falkon.

Katz et al. [71] have also created a task-graph
implementation of the Montage code, using Pegasus.
They did not implement quite the same application
as us: for example, they ran mOverlap and mImgtbl
on the portal rather than on compute nodes, and they
omitted the final mAdd phase. Thus direct
comparison with Swift over Falkon is difficult.
However, if we omit the final mAdd phase from the
comparison, Swift over Falkon is then about 5%
faster than MPI, and thus also faster than the
Pegasus approach, as they claimed that MPI
execution time was the lower bound for them. The
reasons that Swift over Falkon performs better are
that MPI incurs initialization and aggregation
processes, which involve multi-processor
communications, for each of the parallel stages,
where Falkon acquires resource at one time and then
the communications in dispatching tasks from the
Falkon service to workers have been kept minimum
(only 2 message exchanges for each job dispatch).
The Pegasus approach used Condor’s glide-in
mechanism, where Condor is still a heavy-weight
scheduler compared with Falkon.

Figure 19: Execution Time for the Montage

Workflow

5.8 Data Analytics: Sort and WordCount
Many programming models and frameworks have
been introduced to abstract away the management
details of running applications in distributed
environments. MapReduce [5] is regarded as a
power-leveler that solves computation problems

using brutal-force resources. It provides a simple
programming model and powerful runtime system
for processing large datasets. The model is based on
two key functions: “map” and “reduce”, and the
runtime system automatically partitions input data
and schedules the execution of programs in a large
cluster of commodity machines. MapReduce has
been applied to document processing problems (e.g.
distributed indexing, sorting, clustering).

Applications that can be implemented in
MapReduce are a subset of those that can be
implemented in Swift due to the more generic
programming model found in Swift. Contrasting
Swift and Hadoop are interesting as it could
potentially attract new users and applications to
systems which traditionally were not considered.

We compared two benchmarks, Sort and
WordCount, and tested them at different scales and
with different datasets. [72] The testbed consisted of
a 270 processor cluster (TeraPort at UChicago).
Hadoop (the MapReduce implementation from
Yahoo!) was configured to use Hadoop Distributed
File System (HDFS), while Swift used Global
Parallel File System (GPFS). We found Swift
offered comparable performance with Hadoop, a
surprising finding due to the choice of benchmarks
which favored the MapReduce model. In Sorting
over a range of small to large files, Swift execution
times were on average 38% higher when compared
to Hadoop. However, for WordCount, Swift
execution times were on average 75% lower.

Our experience with Swift and Hadoop indicate that
the file systems (GPFS and Hadoop) are the main
bottlenecks as applications scale; HDFS is more
scalable than GPFS, but it still has problems with
small files, and it requires applications be modified.
There are current efforts in Falkon to enable Swift to
operate over local disks rather than shared file
systems and to cache data across jobs, which would
in turn offers comparable scalability and
performance to HDFS without the added
requirements of modifying applications.

6. Future Work and Conclusions
Clusters with 62K processor cores (e.g., TACC Sun
Constellation System, Ranger), Grids (e.g., TeraGrid
with over a dozen sites and 161K processors), and
supercomputers with 160K processors (e.g., IBM
Blue Gene/P) are now available to the scientific
community. These large HPC systems are
considered efficient at executing tightly coupled
parallel jobs within a particular machine using MPI
to achieve inter-process communication. We
proposed using HPC systems for loosely-coupled
applications, which involve the execution of
independent, sequential jobs that can be individually
scheduled, and using files for inter-process
communication.

0

500

1000

1500

2000

2500

3000

3500

m
Pro

je
ct

mDiff/
Fit

m
Bac

kg
ro

un
d

m
Add

(s
ub

)

m
Add tota

l

Components

T
im

e
(s

)

GRAM/Clustering

MPI

Falkon

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

We believe that there is more to HPC than tightly
coupled MPI, and more to HTC than embarrassingly
parallel long running jobs. Like HPC applications,
and science itself, applications are becoming
increasingly complex opening new doors for many
opportunities to apply HPC in new ways if we
broaden our perspective. We hope this paper leaves
the broader community with a stronger appreciation
of the fact that applications that are not tightly
coupled MPI are not necessarily embarrassingly
parallel. Some have just so many simple tasks that
managing them is hard. Applications that operate on
or produce large amounts of data need sophisticated
data management in order to scale. There exist
applications that involve many tasks, each composed
of tightly coupled MPI tasks. Loosely coupled
applications often have dependencies among tasks,
and typically use files for inter-process
communication. Efficient support for these sorts of
applications on existing large scale systems,
including future ones (e.g. Blue Gene/Q [73] and
Blue Water supercomputers) involves substantial
technical challenges and will have big impact on
science.

This paper has shown good support for MTC on a
variety of resources from clusters, grids, and
supercomputers through the use of Swift and Falkon.
Furthermore, we have taken the first steps to address
data-intensive MTC by offloading much of the I/O
away from parallel file systems and into the
network, making full utilization of caches (both on
disk and in memory) and the full network bandwidth
of commodity networks (e.g. gigabit Ethernet) as
well as proprietary and more exotic networks
(Torus, Tree, and Infiniband).

We argue that data locality is critical to the
successful and efficient use of large distributed
systems for data-intensive applications, where the
threshold of what constitutes a data-intensive
application is lowered every year as the performance
gap between processing power and storage
performance widens. Large scale data management
is the next major road block that must be addressed
in a general way, to ensure data movement is
minimized by intelligent data-aware scheduling both
among distributed computing sites, and among
compute nodes. Storage systems design should shift
from being decoupled from the computing
resources, as is commonly found in today’s large-
scale systems. Storage systems must be co-located
among the compute resources, and make full use of
all resources at their disposal, from memory, solid
state storage, spinning disk, and network
interconnects, giving them unprecedented high
aggregate bandwidth to supply to an ever growing
demand for data-intensive applications at the largest
scales. We believe this shift in large-scale
architecture design will lead to improving
application performance and scalability for the most
demanding data intensive applications as system

scales continue to increase according to Moore’s
Law.

In future work, we will develop both the theoretical
and practical aspects of building efficient and
scalable support for both compute-intensive and
data-intensive MTC. To achieve this, we envision
building a new distributed data-aware execution
fabric that scales to at least millions of processors
and petabytes of storage, and will support HPC,
MTC, and HTC workloads concurrently and
efficiently. Clients will be able to submit
computational jobs into the execution fabric by
submitting to any compute node (as opposed to
submitting to single point of failure gateway nodes),
the fabric will guarantee that jobs will execute at
least once, and that it will optimize the data
movement in order to maximize processor utilization
and minimize data transfer costs. The execution
fabric will be elastic in which nodes will be able to
join and leave dynamically, and data will be
automatically replicated throughout the distributed
system for both redundancy and performance. We
will employ a variety of semantic for the data access
patterns, from full POSIX compliance for generality,
to relaxed semantics (e.g. eventual consistency on
data modifications, write-once read-many data
access patterns) to avoid consistency issues and
increase scalability. Achieving this level of
scalability and transparency will allow the data-
aware execution fabric to revolutionize the types of
applications that can be supported at petascale and
future exascale levels.

Acknowledgements
This work was supported in part by the NASA Ames
Research Center GSRP Grant Number
NNA06CB89H and by the Office of Advanced
Scientific Computing Research, Office of Science,
U.S. Dept. of Energy, under Contract DE-AC02-
06CH11357. This research was also supported in
part by the National Science Foundation through
TeraGrid resources provided by UC/ANL.

References
[1] A. Gara, et al. “Overview of the Blue Gene/L

system architecture”, IBM Journal of Research
and Development 49(2/3), 2005

[2] IBM BlueGene/P,
http://www.research.ibm.com/bluegene/, 2008

[3] J. Ousterhout, “Scripting: Higher Level
Programming for the 21st Century”, IEEE
Computer, March 1998

[4] Y. Zhao, I. Raicu, I. Foster. “Scientific
Workflow Systems for 21st Century e-Science,
New Bottle or New Wine?” IEEE Workshop on
Scientific Workflows 2008

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

[5] J. Dean, S. Ghemawat. “MapReduce:
Simplified data processing on large clusters.”
USENIX OSDI04, 2004

[6] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G.
von Laszewski, I. Raicu, T. Stef-Praun, M.
Wilde. “Swift: Fast, Reliable, Loosely Coupled
Parallel Computation”, IEEE Workshop on
Scientific Workflows 2007

[7] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M.
Wilde. “Falkon: a Fast and Light-weight tasK
executiON framework”, IEEE/ACM
International Conference for High Performance
Computing, Networking, Storage, and Analysis
(SC07), 2007

[8] E. Deelman et al. “Pegasus: A Framework for
Mapping Complex Scientific Workflows onto
Distributed Systems,” Scientific Programming
Journal 13(3), 219-237, 2005

[9] I. Raicu, I. Foster, Y. Zhao. “Many-Task
Computing for Grids and Supercomputers”,
IEEE Workshop on Many-Task Computing on
Grids and Supercomputers (MTAGS08) 2008

[10] I. Raicu, Y. Zhao, I. Foster, A. Szalay.
“Accelerating Large-Scale Data Exploration
through Data Diffusion,” ACM International
Workshop on Data-Aware Distributed
Computing 2008

[11] M. Isard, M. Budiu, Y. Yu, A. Birrell, D.
Fetterly. “Dryad: Distributed Data-Parallel
Programs from Sequential Building Blocks,”
European Conference on Computer Systems,
2007

[12] R. Pike, S. Dorward, R. Griesemer, S. Quinlan.
“Interpreting the Data: Parallel Analysis with
Sawzall,” Scientific Programming Journal,
Special Issue on Grids and Worldwide
Computing Programming Models and
Infrastructure 13(4), pp. 227-298, 2005

[13] M. Livny, J. Basney, R. Raman, T.
Tannenbaum. “Mechanisms for High
Throughput Computing,” SPEEDUP Journal
1(1), 1997

[14] I. Foster and C. Kesselman, Eds., “The Grid:
Blueprint for a Future Computing
Infrastructure”, “Chapter 2: Computational
Grids.” Morgan Kaufmann Publishers, 1999

[15] I. Foster, C. Kesselman, S. Tuecke, “The
Anatomy of the Grid”, International Journal of
Supercomputer Applications, 2001

[16] T. Hey, A. Trefethen. “The data deluge: an e-
sicence perspective”, Gid Computing: Making
the Global Infrastructure a Reality, 2003

[17] C. Catlett, et al. “TeraGrid: Analysis of
Organization, System Architecture, and

Middleware Enabling New Types of
Applications,” HPC 2006

[18] Open Science Grid (OSG),
http://www.opensciencegrid.org/, 2008

[19] A. Szalay, A. Bunn, J. Gray, I. Foster, I. Raicu.
“The Importance of Data Locality in
Distributed Computing Applications”, NSF
Workflow Workshop 2006

[20] J. Gray. “Distributed Computing Economics”,
Technical Report MSR-TR-2003-24, Microsoft
Research, Microsoft Corp., 2003

[21] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P.
Beckman, K. Iskra, B. Clifford. “Towards
Loosely-Coupled Programming on Petascale
Systems”, IEEE/ACM International Conference
for High Performance Computing, Networking,
Storage and Analysis (SuperComputing/SC08),
2008

[22] SiCortex, http://www.sicortex.com/, 2008

[23] IBM Blue Gene team, “Overview of the IBM
Blue Gene/P Project”. IBM Journal of Research
and Development, vol. 52, no. 1/2, pp. 199-220,
Jan/Mar 2008

[24] I. Raicu, I. Foster, Y. Zhao, P. Little, C.
Moretti, A. Chaudhary, D. Thain. “The Quest
for Scalable Support of Data Intensive
Workloads in Distributed Systems”, ACM
HPDC09, 2009

[25] I. Raicu, Y. Zhao, I. Foster, A. Szalay. “A Data
Diffusion Approach to Large-scale Scientific
Exploration,” Microsoft eScience Workshop at
RENCI 2007

[26] I. Raicu. “Harnessing Grid Resources with
Data-Centric Task Farms”, Technical Report,
University of Chicago, 2007

[27] Z. Zhang, A. Espinosa, K. Iskra, I. Raicu, I.
Foster, M. Wilde. “Design and Evaluation of a
Collective I/O Model for Loosely-coupled
Petascale Programming”, IEEE Workshop on
Many-Task Computing on Grids and
Supercomputers (MTAGS08) 2008

[28] I. Raicu, I. Foster, Y. Zhao, A. Szalay, P. Little,
C. Moretti, A. Chaudhary, D. Thain. “Towards
Data Intensive Many-Task Computing”, book
chapter in Data Intensive Distributed
Computing: Challenges and Solutions for
Large-Scale Information Management, IGI
Global Publishers, 2009

[29] D. Thain, T. Tannenbaum, M. Livny,
“Distributed Computing in Practice: The
Condor Experience” Concurrency and
Computation: Practice and Experience 17 (2-4),
pp. 323-356, 2005

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

[30] E. Robinson, D.J. DeWitt. “Turning Cluster
Management into Data Management: A System
Overview”, Conference on Innovative Data
Systems Research, 2007

[31] B. Bode, D.M. Halstead, R. Kendall, Z. Lei, W.
Hall, D. Jackson. “The Portable Batch
Scheduler and the Maui Scheduler on Linux
Clusters,” Usenix, Linux Showcase &
Conference, 2000

[32] S. Zhou. “LSF: Load sharing in large-scale
heterogeneous distributed systems,” Workshop
on Cluster Computing, 1992

[33] W. Gentzsch, “Sun Grid Engine: Towards
Creating a Compute Power Grid,” 1st
International Symposium on Cluster Computing
and the Grid, 2001

[34] A. Bialecki, M. Cafarella, D. Cutting, O.
O’Malley. “Hadoop: A Framework for Running
Applications on Large Clusters Built of
Commodity Hardware,”
http://lucene.apache.org/hadoop/, 2005

[35] D.P. Anderson, “BOINC: A System for Public-
Resource Computing and Storage,” IEEE/ACM
International Workshop on Grid Computing,
2004

[36] J. Frey, T. Tannenbaum, I. Foster, M. Frey, S.
Tuecke. “Condor-G: A Computation
Management Agent for Multi-Institutional
Grids,” Cluster Computing, 2002

[37] G. Banga, P. Druschel, J.C. Mogul. “Resource
Containers: A New Facility for Resource
Management in Server Systems.” Symposium
on Operating Systems Design and
Implementation, 1999

[38] J.A. Stankovic, K. Ramamritham, D. Niehaus,
M. Humphrey, G. Wallace, “The Spring
System: Integrated Support for Complex Real-
Time Systems”, Real-Time Systems, May
1999, Vol 16, No. 2/3, pp. 97-125, 1999

[39] G. Mehta, C. Kesselman, E. Deelman.
“Dynamic Deployment of VO-specific
Schedulers on Managed Resources”, Technical
Report, USC ISI, 2006

[40] E. Walker, J.P. Gardner, V. Litvin, E.L. Turner,
“Creating Personal Adaptive Clusters for
Managing Scientific Tasks in a Distributed
Computing Environment”, Workshop on
Challenges of Large Applications in Distributed
Environments, 2006

[41] G. Singh, C. Kesselman E. Deelman.
“Performance Impact of Resource Provisioning
on Workflows”, Technical Report, USC ISI,
2006

[42] D.P. Anderson, E. Korpela, R. Walton. “High-
Performance Task Distribution for Volunteer
Computing.” IEEE International Conference on
e-Science and Grid Technologies, 2005

[43] J. Cope, et al. “High Throughput Grid
Computing with an IBM Blue Gene/L,” Cluster
2007

[44] A. Peters, A. King, T. Budnik, P. McCarthy, P.
Michaud, M. Mundy, J. Sexton, G. Stewart.
“Asynchronous Task Dispatch for High
Throughput Computing for the eServer IBM
Blue Gene® Supercomputer,” Parallel and
Distributed Processing (IPDPS), 2008

[45] IBM Coorporation. “High-Throughput
Computing (HTC) Paradigm,” IBM System
Blue Gene Solution: Blue Gene/P Application
Development, IBM RedBooks, 2008

[46] N. Desai. “Cobalt: An Open Source Platform
for HPC System Software Research,”
Edinburgh BG/L System Software Workshop,
2005

[47] Y. Zhao, I. Raicu, I. Foster, M. Hategan, V.
Nefedova, M. Wilde. “Realizing Fast, Scalable
and Reliable Scientific Computations in Grid
Environments”, Book chapter in Grid
Computing Research Progress, Nova Publisher
2008

[48] “Swift Workflow System”:
www.ci.uchicago.edu/swift, 2008

[49] G.v. Laszewski, M. Hategan, D. Kodeboyina.
“Java CoG Kit Workflow,” in I.J. Taylor, E.
Deelman, D.B. Gannon, and M. Shields, eds.,
Workflows for eScience, pp. 340-356, 2007

[50] I. Foster, “Globus Toolkit Version 4: Software
for Service-Oriented Systems,” Conference on
Network and Parallel Computing, 2005

[51] The Globus Security Team. “Globus Toolkit
Version 4 Grid Security Infrastructure: A
Standards Perspective,” Technical Report,
Argonne National Laboratory, MCS, 2005

[52] M. Feller, I. Foster, and S. Martin. “GT4
GRAM: A Functionality and Performance
Study”, TeraGrid Conference 2007

[53] S. Podlipnig, L. Böszörmenyi. “A survey of
Web cache replacement strategies”, ACM
Computing Surveys (CSUR), Volume 35 , Issue
4, Pages: 374 – 398, 2003

[54] W. Allcock, J. Bresnahan, R. Kettimuthu, M.
Link, C. Dumitrescu, I. Raicu, I. Foster. “The
Globus Striped GridFTP Framework and
Server”, ACM/IEEE SC05, 2005

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

[55] GKrellM.
http://members.dslextreme.com/users/billw/gkr
ellm/gkrellm.html, 2008

[56] E. Walker, D.J. Earl, M.W. Deem. “How to
Run a Million Jobs in Six Months on the NSF
TeraGrid”, TeraGrid Conference 2007

[57] I. Raicu, C. Dumitrescu, I. Foster. “Dynamic
Resource Provisioning in Grid Environments”,
TeraGrid Conference 2007

[58] ANL/UC TeraGrid Site Details,
http://www.uc.teragrid.org/tg-docs/tg-tech-
sum.html, 2007

[59] F. Schmuck and R. Haskin, “GPFS: A Shared-
Disk File System for Large Computing
Clusters,” FAST 2002

[60] C. Moretti, J. Bulosan, D. Thain, and P. Flynn.
“All-Pairs: An Abstraction for Data-Intensive
Cloud Computing”, IPDPS 2008

[61] D. Thain, C. Moretti, and J. Hemmes, “Chirp:
A Practical Global File system for Cluster and
Grid Computing”, Journal of Grid Computing,
Springer 2008

[62] The Functional Magnetic Resonance Imaging
Data Center, http://www.fmridc.org/, 2007

[63] NIST Chemistry WebBook Database,
http://webbook.nist.gov/chemistry/, 2008

[64] D.T. Moustakas et al. “Development and
Validation of a Modular, Extensible Docking
Program: DOCK 5,” J. Comput. Aided Mol.
Des. 20, pp. 601-619, 2006

[65] KEGG’s Ligand Database:
http://www.genome.ad.jp/kegg/ligand.html,
2008

[66] D. Hanson. “Enhancing Technology
Representations within the Stanford Energy
Modeling Forum (EMF) Climate Economic
Models,” Energy and Economic Policy Models:
A Reexamination of Fundamentals, 2006

[67] I. Raicu, I. Foster, A. Szalay, G. Turcu.
“AstroPortal: A Science Gateway for Large-
scale Astronomy Data Analysis”, TeraGrid
Conference 2006

[68] I. Raicu, I. Foster, A. Szalay. “Harnessing Grid
Resources to Enable the Dynamic Analysis of
Large Astronomy Datasets”, IEEE/ACM
International Conference for High Performance
Computing, Networking, Storage, and Analysis
(SC06), 2006

[69] SDSS: Sloan Digital Sky Survey,
http://www.sdss.org/, 2008

[70] J.C. Jacob, et al. “The Montage Architecture for
Grid-Enabled Science Processing of Large,

Distributed Datasets,” Earth Science
Technology Conference 2004

[71] D. Katz, G. Berriman, E. Deelman, J. Good, J.
Jacob, C. Kesselman, A. Laity, T. Prince, G.
Singh, M. Su. A Comparison of Two Methods
for Building Astronomical Image Mosaics on a
Grid, Proceedings of the 7th Workshop on High
Performance Scientific and Engineering
Computing (HPSEC-05), 2005

[72] Q.T. Pham, A.S. Balkir, J. Tie, I. Foster, M.
Wilde, I. Raicu. “Data Intensive Scalable
Computing on TeraGrid: A Comparison of
MapReduce and Swift”, TeraGrid Conference
(TG08) 2008

[73] R. Stevens. “The LLNL/ANL/IBM
Collaboration to Develop BG/P and BG/Q,”
DOE ASCAC Report, 2006

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

Dr. Ioan Raicu is a
NSF/CRA Computation

Innovation Fellow at

Northwestern University, in
the Department of Electrical

Engineering and Computer
Science. Ioan holds a Ph.D.

in Computer Science from
University of Chicago under

the guidance of Dr. Ian Foster. He is a 3-year award
winner of the GSRP Fellowship from NASA Ames

Research Center. His research work and interests are
in the general area of distributed systems. His

dissertation work focused on a new paradigm Many-
Task Computing (MTC), which aims to bridge the

gap between two predominant paradigms from
distributed systems, High-Throughput Computing

(HTC) and High-Performance Computing (HPC).
He is particularly interested in efficient task dispatch

and execution systems, resource provisioning, data
management, scheduling, and performance

evaluations in distributed systems. His work has
been funded by the NASA Ames Research Center

Graduate Student Research Program, the DOE
Office of Advanced Scientific Computing Research,

and most recently by the prestigious NSF/CRA
CIFellows program.

Dr. Ian Foster is the
Associate Division

Director and a Senior
Scientist in the

Mathematics and

Computer Science
Division at Argonne

National Laboratory,
where he leads the

Distributed Systems
Laboratory, and he is an

Arthur Holly Compton
Professor in the

Department of Computer
Science at the University of Chicago. He is also

involved with both the Open Grid Forum and with
the Globus Alliance as an open source strategist. In

2006, he was appointed director of the Computation
Institute, a joint project between the University of

Chicago, and Argonne. An earlier project, Strand,
received the British Computer Society Award for

technical innovation. His research resulted in the
development of techniques, tools and algorithms for

high-performance distributed computing and parallel
computing. As a result he is denoted as "the father of

the Grid". Foster led research and development of
software for the I-WAY wide-area distributed

computing experiment, which connected
supercomputers, databases and other high-end

resources at 17 sites across North America in 1995.
His own labs, the Distributed Systems Laboratory is

the nexus of the multi-institute Globus Project, a
research and development effort that encourages

collaborative computing by providing advances
necessary for engineering, business and other fields.

Furthermore the Computation Institute addresses

many of the most challenging computational and
communications problems facing Grid

implementations today. In 2004, he founded Univa
Corporation, which was merged with United

Devices in 2007 and operate under the name Univa
UD. Foster's honors include the Lovelace Medal of

the British Computer Society, the Gordon Bell Prize
for high-performance computing (2001), as well as

others. He was elected Fellow of the American
Association for the Advancement of Science in

2003. Dr. Foster also serves as PI or Co-PI on
projects connected to the DOE global change

program, the National Computational Science
Alliance, the NASA Information Power Grid

project, the NSF Grid Physics Network, GRIDS
Center, and International Virtual Data Grid

Laboratory projects, and other DOE and NSF
programs. His research is supported by DOE, NSF,

NASA, Microsoft, and IBM.

Mike Wilde is a Software

Architect in the Distributed
Systems Laboratory in the

Math and Computer Science
Division at Argonne

National Laboratory. He is
also a Fellow at the

Computation Institute at the
University of Chicago. His

research interests include

parallel programming, parallel scripting languages,
data provenance, scientific and engineering

computing. He leads the Swift parallel scripting
language project supported by NSF, and is deeply

involved with the Falkon light-weight task execution
framework.

Zhao Zhang is a PhD
student in the Distributed

Systems Laboratory in the
Department of Computer

Science at University of
Chicago. His research

interests are in
supercomputers, grid

computing, and cloud
computing. His research

focus is on supercomputing

data management.

Dr. Kamil Iskra is an
Assistant Computer

Scientist in the Mathematics
and Computer Science

Division at Argonne
National Laboratory. He has

worked on various projects
from Parallel Virtual File

System (PVFS), ZeptoOS,

*Biographical sketch, along with a photo

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

I/O Forwarding Scalability Layer (IOFSL), and
Petascale I/O Characterization Tools (Darshan).

Dr. Peter Beckman is the

director of the Leadership
Computing Facility at the

U.S. Department of Energy's
Argonne National

Laboratory. The Leadership
Computing Facility operates

the Argonne Leadership
Computing Facility (ALCF),

which is home to one of the
world's fastest computers for open science, the Blue

Gene/P, and is part of the U.S. Department of
Energy's (DOE) effort to provide leadership-class

computing resources to the scientific community.
Beckman also leads Argonne's exascale computing

strategic initiative and has previously served as the
ALCF's chief architect and project director. He has

worked in systems software for parallel computing,
operating systems and Grid computing for 20 years.

After receiving a Ph.D. degree in computer science
from Indiana University in 1993, he helped create

the Extreme Computing Laboratory at Indiana
University. In 1997, Beckman joined the Advanced

Computing Laboratory (ACL) at Los Alamos
National Laboratory, where he founded the ACL's

Linux cluster team and organized the Extreme Linux
series of workshops and activities that helped

catalyze the high-performance Linux computing
cluster community. Beckman has also worked in

industry, founding a research laboratory in 2000 in

Santa Fe sponsored by Turbolinux Inc., which
developed the world's first dynamic provisioning

system for large clusters and data centers. The
following year, he became vice president of

Turbolinux's worldwide engineering efforts,
managing development offices in the US, Japan,

China, Korea and Slovenia. Beckman joined
Argonne in 2002. As Director of Engineering for the

TeraGrid, he designed and deployed the world's
most advanced Grid system for linking production

HPC computing for the National Science
Foundation. After the TeraGrid became fully

operational, he started research teams focusing on
petascale high-performance operating systems, fault

tolerance, system software and the SPRUCE urgent
computing framework, which supports running

critical high-performance applications at many of
the nation's supercomputer centers.

Dr. Yong Zhao obtained
his Ph.D. in Computer

Science from The
University of Chicago

under Dr. Ian Foster's
supervision, and was a key

developer of the GriPhyN
Virtual Data System

(VDS), a data and

workflow management system for data-intensive
science collaborations. VDS plays a fundamental

role in various Data Grid projects such as iVDGL

(International Virtual Data Grid Laboratory), PPDG
(Partical Physics Data Grid), OSG (Open Science

Grid) etc. The system has been applied to scientific
applications in various disciplines such as the high

energy physics experiments CMS and ATLAS, the
astrophysics project Sloan Digital Sky Survey, the

QuarkNet science education project, and various
Neuroscience and bioinformatics projects. He also

designed and developed the Swift system, a
programming tool for fast, scalable and reliable

loosely-coupled parallel computation. He has also
been actively involved in the Falkon project, a

lightweight task execution framework for high
throughput computing. He is now working at

Microsoft on Business Intelligence projects that
leverage large scale storage and computing

infrastructures for Web analytics and behavior
targeting.

Dr. Alex Szalay is a
professor in the

Department of Physics
and Astronomy of the

Johns Hopkins
University. His

interests are theoretical
astrophysics and

galaxy formation. His research includes: Multicolor
Properties of Galaxies, Galaxy Evolution, the Large

Scale Power Spectrum of Fluctuations, Gravitational

Lensing, and Pattern recognition and Classification
Problems.

Dr. Alok Choudhary is the
chair and Professor of

Electrical Engineering and
Computer Science

Department. He is also a
Professor of Marketing and

Technology Industry
Management at Kellogg

School of Management at
Northwestern University.

From 1989 to 1996, he was an a faculty in the ECE
department at Syracuse University. Alok Choudhary

received his Ph.D. from University of Illinois,
Urbana-Champaign, in Electrical and Computer

Engineering, in 1989, an M.S. from University of
Massachusetts, Amherst, in 1986, and B.E. (Hons.)

from Birla Institue of Technology and Science,
Pilani, India in 1982. Dr. Choudhary was a co-

founder of Accelchip Inc. and was its Vice President
for Research and Technology from 2000-2002. He

received the National Science Foundation's Young
Investigator Award in 1993, an IEEE Engineering

Foundation award, an IBM Faculty Development
award, and an Intel research council award.

Choudhary has published more than 250 papers in

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Cluster Computing (2009)

various journals and conferences. He has also
written a book and several book chapters on the

above topics. Choudhary serves on the editorial

boards of IEEE Transactions on Parallel and
Distributed Systems, Journal of Parallel and

Distributed Systems and International Journal of
High Performance Computing and Networking. He

has served as a consultant to many companies and as
well as on their technical advisory boards. His

research interests are high-performance computing
and communication systems, power aware systems,

computer architecture, high-performance I/O
systems and software and their applications in many

domains including information processing (e.g., data
mining, CRM, BI) and scientific computing (e.g.,

scientific discoveries). Furthermore, his interests lie
in the design and evaluation of architectures and

software systems (from system software such as
runtime systems to compilers), high-performance

servers, high-performance databases and input-
output and software protection/security.

Philip Little is a PhD
student in the Computer

Science and Engineering
at the University of Notre

Dame. His research
interests include online

and randomized
algorithms.

Christopher Moretti is a

PhD candidate in the
Computer Science and

Engineering at the
University of Notre Dame.

His research interests are in
distributed computing

abstractions for scientific
computing.

Dr. Amitabh
Chaudhary is an

Assistant Professor of
Computer Science and

Engineering at the
University of Notre

Dame. His research interests are in online
algorithms, online learning, spatial data structures,

and graph theory.

Dr. Douglas Thain is an

Assistant Professor of
Computer Science and

Engineering at the
University of Notre Dame.

He directs the Cooperative
Computing Lab, am

enterprise that connects

computer scientists with researchers in other
scientific fields to solve new problems on large

distributed systems. He received a PhD in Computer

Sciences from the University of Wisconsin, where
he contributed to the Condor distributed computing

project. He received a BS in Physics from the
University of Minnesota. Prof. Thain received an

NSF CAREER award in 2006.

