
                             Editorial Manager(tm) for Cluster Computing 
                                  Manuscript Draft 
 
 
Manuscript Number:  
 
Title: Middleware Support for Many-Task Computing 
 
Article Type: HPDC Special Issue 
 
Section/Category:  
 
Keywords: many-task computing; MTC; high-throughput computing; resource management; Falkon; 
Swift 
 
Corresponding Author: Dr. Ioan Raicu, Ph.D. 
 
Corresponding Author's Institution: Northwestern University 
 
First Author: Ioan Raicu, PhD 
 
Order of Authors: Ioan Raicu, PhD; Ioan Raicu, Ph.D.; Ian Foster, PhD; Mike Wilde, BS; Zhao Zhang, MS; 
Kamil Iskra, PhD; Pete Beckman, PhD; Yong Zhao, PhD; Alex Szalay, PhD; Alok Choudhary, PhD; Philip 
Little, MS; Christopher Moretti, MS; Amitabh Chaudhary, PhD; Douglas Thain, PhD 
 
Manuscript Region of Origin: UNITED STATES 
 
Abstract: Many-task computing aims to bridge the gap between two computing paradigms, high 
throughput computing and high performance computing. Many-task computing denotes high-
performance computations comprising multiple distinct activities, coupled via file system operations. 
The aggregate number of tasks, quantity of computing, and volumes of data may be extremely large. 
Traditional techniques found in production systems in the scientific community to support many-task 
computing do not scale to today's largest systems, due to issues in local resource manager scalability 
and granularity, efficient utilization of the raw hardware, long wait queue times, and shared/parallel 
file system contention and scalability. To address these limitations, we adopted a "top-down" approach 
to building a middleware called Falkon, to support the most demanding many-task computing 
applications at the largest scales. Falkon (Fast and Light-weight tasK executiON framework) integrates 
(1) multi-level scheduling to enable dynamic resource provisioning and minimize wait queue times, (2) 
a streamlined task dispatcher able to achieve orders-of-magnitude higher task dispatch rates than 
conventional schedulers, and (3) data diffusion which performs data caching and uses a data-aware 
scheduler to co-locate computational and storage resources. Micro-benchmarks have shown Falkon to 
achieve over 15K+ tasks/sec throughputs, scale to hundreds of thousands of processors and to millions 
of queued tasks, and execute billions of tasks per day. Data diffusion has also shown to improve 
applications scalability and performance, with its ability to achieve hundreds of Gb/s I/O rates on 
modest sized clusters, with Tb/s I/O rates on the horizon. Falkon has shown orders of magnitude 
improvements in performance and scalability than traditional approaches to resource management 
across many diverse workloads and applications at scales of billions of tasks on hundreds of thousands 
of processors across clusters, specialized systems, Grids, and supercomputers. Falkon's performance 
and scalability have enabled a new class of applications called Many-Task Computing to operate at 
previously so-believed impossible scales with high efficiency. 
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Abstract Many-task computing aims to bridge 
the gap between two computing paradigms, high 
throughput computing and high performance 
computing. Many-task computing denotes high-
performance computations comprising multiple 

distinct activities, coupled via file system operations. 
The aggregate number of tasks, quantity of 
computing, and volumes of data may be extremely 
large. Traditional techniques found in production 
systems in the scientific community to support 
many-task computing do not scale to today’s largest 
systems, due to issues in local resource manager 
scalability and granularity, efficient utilization of the 
raw hardware, long wait queue times, and 
shared/parallel file system contention and 
scalability. To address these limitations, we adopted 
a “top-down” approach to building a middleware 
called Falkon, to support the most demanding many-
task computing applications at the largest scales. 
Falkon (Fast and Light-weight tasK executiON 
framework) integrates (1) multi-level scheduling to 
enable dynamic resource provisioning and minimize 
wait queue times, (2) a streamlined task dispatcher 
able to achieve orders-of-magnitude higher task 
dispatch rates than conventional schedulers, and (3) 
data diffusion which performs data caching and uses 
a data-aware scheduler to co-locate computational 
and storage resources. Micro-benchmarks have 
shown Falkon to achieve over 15K+ tasks/sec 
throughputs, scale to hundreds of thousands of 
processors and to millions of queued tasks, and 
execute billions of tasks per day. Data diffusion has 
also shown to improve applications scalability and 
performance, with its ability to achieve hundreds of 
Gb/s I/O rates on modest sized clusters, with Tb/s 
I/O rates on the horizon. Falkon has shown orders of 
magnitude improvements in performance and 
scalability than traditional approaches to resource 
management across many diverse workloads and 
applications at scales of billions of tasks on 
hundreds of thousands of processors across clusters, 
specialized systems, Grids, and supercomputers. 
Falkon’s performance and scalability have enabled a 
new class of applications called Many-Task 
Computing to operate at previously so-believed 
impossible scales with high efficiency. 

1. Introduction 
We want to enable the use of large-scale distributed 
systems for task-parallel applications, which are 
linked into useful workflows through the looser 
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task-coupling model of passing data via files 
between dependent tasks. This potentially larger 
class of task-parallel applications is precluded from 
leveraging the increasing power of modern parallel 
systems such as supercomputers (e.g. IBM Blue 
Gene/L [1] and Blue Gene/P [2]) due to the lack of 
efficient support in those systems for the “scripting” 
programming model [3]. With advances in e-Science 
and the growing complexity of scientific analyses, 
more scientists and researchers rely on various 
forms of scripting to automate end-to-end 
application processes involving task coordination, 
provenance tracking, and bookkeeping. Their 
approaches are typically based on a model of loosely 
coupled computation, in which data is exchanged 
among tasks via files, databases or XML documents, 
or a combination of these. Vast increases in data 
volume combined with the growing complexity of 
data analysis procedures and algorithms have 
rendered traditional manual exploration unfavorable 
as compared with modern high performance 
computing processes automated by scientific 
workflow systems. [4] 

The problem space can be partitioned into four main 
categories (see Figure 1). 1) At the low end of the 
spectrum (low number of tasks and small input size), 
we have tightly coupled Message Passing Interface 
(MPI) applications (white). 2) As the data size 
increases, we move into the analytics category, such 
as data mining and analysis (blue); MapReduce [5] 
is an example for this category. 3) Keeping data size 
modest, but increasing the number of tasks moves us 
into the loosely coupled applications involving many 
tasks (yellow); Swift/Falkon [6, 7] and 
Pegasus/DAGMan [8] are examples of this category. 
4) Finally, the combination of both many tasks and 
large datasets moves us into the data-intensive 
Many-Task Computing [9] category (green); 
examples are Swift/Falkon and data diffusion [10], 
Dryad [11], and Sawzall [12].  

 
Figure 1: Problem types with respect to data size 

and number of tasks 

High-performance computing can be classified in 
the category denoted by the white area. High-

throughput computing [13] can be classified as a 
subset of the category denoted by the yellow area. 
Many-Task Computing [9] can be classified in the 
categories denoted by the yellow and green areas. 
This paper focuses on techniques to enable the 
support of many-task computing, including data-
intensive many-task computing.  

Clusters and Grids [14, 15] have been the preferred 
platform for loosely coupled applications that have 
been traditionally part of the high throughput 
computing class of applications, which are managed 
and executed through workflow systems or parallel 
programming systems. Various properties of a new 
emerging applications, such as large number of tasks 
(i.e. millions or more), relatively short per task 
execution times (i.e. seconds to minutes long), and 
data intensive tasks (i.e. tens of MB of I/O per CPU 
second of compute) have led to the definition of a 
new class of applications called Many-Task 
Computing [9]. MTC emphasizes on using larger 
number of computing resources over short periods 
of time to accomplish many computational tasks, 
where the primary metrics are in seconds (e.g., 
FLOPS, tasks/sec, IO/sec), while HTC requires large 
amounts of computing for long periods of time with 
the primary metrics being operations per month [13]. 
MTC applications are composed of many tasks (both 
independent and dependent) that can be individually 
scheduled on many computing resources across 
multiple administrative boundaries to achieve some 
larger application goal.  

MTC denotes high-performance computations 
comprising multiple distinct activities, coupled via 
file system operations. Tasks may be small or large, 
uniprocessor or multiprocessor, compute-intensive 
or data-intensive. The set of tasks may be static or 
dynamic, homogeneous or heterogeneous, loosely 
coupled or tightly coupled. The aggregate number of 
tasks, quantity of computing, and volumes of data 
may be extremely large. The new term MTC draws 
attention to the many computations that are 
heterogeneous but not “happily” parallel. 

Within the science domain, the data that needs to be 
processed generally grows faster than computational 
resources and their speed. The scientific community 
is facing an imminent flood of data expected from 
the next generation of experiments, simulations, 
sensors and satellites. Scientists are now attempting 
calculations requiring orders of magnitude more 
computing and communication than was possible 
only a few years ago. Moreover, in many currently 
planned and future experiments, they are also 
planning to generate several orders of magnitude 
more data than has been collected in the entire 
human history [16]. Many applications in the 
scientific computing generally use a shared 
infrastructure such as TeraGrid [17] and Open 
Science Grid [18], where data movement relies on 
shared or parallel file systems. The rate of increase 
in the number of processors per system is 
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outgrowing the rate of performance increase of 
parallel file systems, which requires rethinking 
existing data management techniques. 
Unfortunately, this trend will continue, as advanced 
multi-core and many-core processors will increase 
the number of processor cores one to two orders of 
magnitude over the next decade. [4] We believe that 
data locality is critical to the successful and efficient 
use of large distributed systems for data-intensive 
applications [19, 20] in the face of a growing gap 
between compute power and storage performance. 
Large scale data management needs to be a primary 
objective for any MTC-enabled middleware, to 
ensure data movement is minimized by intelligent 
data-aware scheduling. 

Over the past year and a half, Falkon [21, 7] has 
seen wide deployment and usage across a variety of 
systems, from the TeraGrid [17], the SiCortex [22], 
the IBM Blue Gene/P [23], and the Sun 
Constellation [17]. Figure 2 shows plot of Falkon 
across these various systems from December 2007 – 
April 2009. Each blue dot represents a 60 second 
average of allocated processors, and the black line 
denotes the number of completed tasks. In summary, 
there were 166,305 peak concurrent processors, with 
2 million CPU hours consumed and 173 million 
tasks for an average task execution time of 64 
seconds and a standard deviation of 486 seconds. 
Many of the results presented here are represented in 
Figure 2, although some applications were run prior 
to the history log repository being instantiated in late 
2007.  

 
Figure 2: December 2007 – April 2009 plot of 

Falkon across various systems (ANL/UC TG 316 
processor cluster, SiCortex 5832 processor machine, 
IBM Blue Gene/P 4K and 160K processor machines, 

and the Sun Constellation with 62K processors) 

This paper is a culmination of a collection of papers 
[7, 9, 10, 19, 24, 25, 21, 26, 27, 28] dating back to 
2006, and includes a deeper analysis of previous 
results as well as some new results. This paper 
explores the issues in building the middleware to 
support the many-task computing paradigm on large 
scale distributed systems. We have designed and 
implemented this middleware – Falkon – to enable 
the support of many-task computing on clusters, 
grids and supercomputers. Falkon addresses 

shortcomings in traditional resource management 
systems that support high-throughput and high-
performance computing that are not efficient in 
supporting many-task computing. Falkon was 
designed to enable the rapid and efficient execution 
of many tasks on large scale systems, and integrate 
novel data management capabilities to extend data 
intensive applications scalability beyond that of 
traditional parallel file systems.  

2. Related Work 
As high throughput computing (HTC) is a subset of 
MTC, it is worth mentioning the various efforts in 
enabling HTC on large scale systems. Some of these 
systems are Condor [29, 30], Portable Batch System 
(PBS) [31], Load Sharing Facility (LSF) [32], SGE 
[33], MapReduce [5], Hadoop [34], and BOINC 
[35]. Full-featured local resource managers (LRMs) 
such as Condor, PBS, LSF, and SGE support client 
specification of resource requirements, data staging, 
process migration, check-pointing, accounting, and 
daemon fault recovery. Condor and glide-ins [36] 
are the original tools to enable HTC, but their 
emphasis on robustness and recoverability limits 
their efficiency for MTC applications in large-scale 
systems. We found that relaxing some constraints 
(e.g. recoverability) from the middleware and 
encouraging the end applications to implement these 
constraints has enabled significant improvements in 
middleware performance and efficiency at large 
scale, between two to four orders of magnitude 
better performance.  

Multi-level scheduling has been applied at the OS 
level [37, 38] to provide faster scheduling for groups 
of tasks for a specific user or purpose by employing 
an overlay that does lightweight scheduling within a 
heavier-weight container of resources: e.g., threads 
within a process or pre-allocated thread group. Frey 
and his colleagues pioneered the application of 
resource provisioning to clusters via their work on 
Condor “glide-ins” [36]. Requests to a batch 
scheduler (submitted, for example, via Globus 
GRAM) create Condor “startd” processes, which 
then register with a Condor resource manager that 
runs independently of the batch scheduler. Others 
have also used this technique. For example, Mehta et 
al. [39] embed a Condor pool in a batch-scheduled 
cluster, while MyCluster [40] creates “personal 
clusters” running Condor or SGE. Such “virtual 
clusters” can be dedicated to a single workload; 
thus, Singh et al. find, in a simulation study [41], a 
reduction of about 50% in completion time. 
However, because they rely on heavyweight 
schedulers to dispatch work to the virtual cluster, the 
per-task dispatch time remains high, and hence the 
wait queue times remain significantly higher than in 
the ideal case due to the schedulers’ inability to push 
work out faster. 
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The BOINC “volunteer computing” system [35, 42] 
is known to scale well to large number of compute 
resources, but lacks support for data intensive 
applications due to the nature of the wide area 
network deployment BOINC typically has, as well 
as lack of support for “black box” applications. 
Although the performance of BOINC is significantly 
better than traditional resource managers, it is still 
one to two orders of magnitude slower than our 
proposed solution, running at about 100 jobs/sec 
compared to up to 3000 jobs/sec in our proposed 
solution.  

On the IBM Blue Gene supercomputer, various 
works [43, 44] have leveraged the HTC-mode [45] 
support in Cobalt [46] scheduling system. These 
works have aimed at integrating their solution as 
much as possible in Cobalt; however, it is not clear 
that the current implementations will be able to 
support the largest MTC applications at the largest 
scales, as their performance is still one to two orders 
of magnitude slower than our proposed solution. 
Furthermore, these works only focus on compute 
resource management, and ignore data management 
altogether.  

MapReduce (including Hadoop) is typically applied 
to a data model consisting of name/value pairs, 
processed at the programming language level. Its 
strengths are in its ability to spread the processing of 
a large dataset to thousands of processors with 
minimal expertise in distributed systems; however it 
often involves the development of custom filtering 
scripts and does not support “black box” application 
execution as is commonly found in MTC or HTC 
applications.  

Swift [6, 47, 48] and Falkon [7] have been used to 
execute MTC applications on clusters, multi-site 
Grids (e.g., Open Science Grid [18], TeraGrid [17]), 
specialized large machines (SiCortex [22]), and 
supercomputers (e.g., Blue Gene/P [2]). Swift 
enables scientific workflows through a data-flow-
based functional parallel programming model. It is a 
parallel scripting tool for rapid and reliable 
specification, execution, and management of large-
scale science and engineering workflows. The 
runtime system in Swift relies on the CoG Karajan 
[49] workflow engine for efficient scheduling and 
load balancing, and it integrates with the Falkon 
light-weight task execution dispatcher. In this paper, 
we will focus on Falkon, the middleware we have 
designed and implemented to enable MTC on a wide 
range of systems from the average cluster to the 
largest supercomputers, and will also provide some 
details of the Swift system.  

In summary, our proposed work in light-weight task 
dispatching and data management offers many 
orders of magnitude better performance and 
scalability than traditional resource management 
techniques, and it is changing the types of 
applications that can efficiently execute on large 

distributed resources. Once the capability of light-
weight task dispatching and scalable data 
management was available, new applications 
emerged that needed to run at ever increasing scales. 
We have achieved these improvements by narrowing 
the focus of the resource management by not 
supporting various expensive features, and by 
relaxing other constraints from the resource 
management framework effectively pushing them to 
the application or the clients.  

3. The Falkon Framework 
To address the limitations of existing resource 
management systems in supporting many-task 
computing, we adopted a “top-down” approach to 
building the middleware – Falkon – to support the 
most demanding many-task computing applications 
at the largest scales. Falkon integrates (1) multi-level 
scheduling to enable dynamic resource provisioning 
and minimize wait queue times, (2) a streamlined 
task dispatcher able to achieve order-of-magnitude 
higher task dispatch rates than conventional 
schedulers, and (3) data diffusion which performs 
data caching and uses a data-aware scheduler to co-
locate computational and storage resources. This 
section will describe each of these in detail. 

3.1 Architecture Overview 
Falkon consists of a dispatcher, a provisioner, and 
zero or more executors. The dispatcher accepts tasks 
from clients and implements the dispatch policy. 
The provisioner implements the resource acquisition 
policy. Executors run tasks received from the 
dispatcher. Components communicate via Web 
Services (WS) messages, except that notifications 
are performed via a custom TCP-based protocol. 
The notification mechanism is implemented over 
TCP because when we first implemented the core 
Falkon components using GT3.9.5, the Globus 
Toolkit did not support brokered WS notifications. 
Starting with GT4.0.5, there is support for brokered 
notifications. 

The dispatcher implements the factory/instance 
pattern, providing a create instance operation to 
allow a clean separation among different clients. To 
access the dispatcher, a client first requests creation 
of a new instance, for which is returned a unique 
endpoint reference (EPR). The client then uses that 
EPR to submit tasks, monitor progress (or wait for 
notifications), retrieve results, and (finally) destroy 
the instance.  

A client “submit” request takes an array of tasks, 
each with working directory, command to execute, 
arguments, and environment variables. It returns an 
array of outputs, each with the task that was run, its 
return code, and optional output strings (STDOUT 
and STDERR contents). A shared notification 
engine among all the different queues is used to 
notify executors that work is available for pick up. 
This engine maintains a queue, on which a pool of 
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threads operate to send out notifications. The GT4 
container also has a pool of threads that handle WS 
messages. Profiling shows that most dispatcher time 
is spent communicating (WS calls, notifications). 
Increasing the number of threads allows the service 
to scale effectively on newer multicore and 
multiprocessor systems.  

The dispatcher runs within a Globus Toolkit 4 (GT4) 
[50] WS container, which provides authentication, 
message integrity, and message encryption 
mechanisms, via transport-level, conversation-level, 
or message-level security [51]. 

The provisioner is responsible for creating and 
destroying executors. It is initialized by the 
dispatcher with information about the state to be 
monitored and how to access it; the rule(s) under 
which the provisioner should create/destroy 
executors; the location of the executor code; bounds 
on the number of executors to be created; bounds on 
the time for which executors should be created; and 
the allowed idle time before executors are destroyed. 
The provisioner periodically monitors dispatcher 
state and determines whether to create additional 
executors, and if so, how many, and for how long. 
The provisioner supports both static and dynamic 
provisioning. Dynamic provisioning is supported 
through GRAM4 [52]. Static provisioning is 
supported by directly interfacing with LRMs; Falkon 
currently supports PBS, SGE and Cobalt.  

A new executor registers with the dispatcher. Work 
is then supplied as follows: the dispatcher notifies 
the executor when work is available; the executor 
requests work; the dispatcher returns the task(s); the 
executor executes the supplied task(s) and returns 
the exit code and the optional standard output/error 
strings; and the dispatcher acknowledges delivery. 

Communication costs can be reduced by task 
bundling between client and dispatcher and/or 
dispatcher and executors. In the latter case, problems 
can arise if task sizes vary and one executor gets 
assigned many large tasks, although that problem 
can be addressed by having clients assign each task 
an estimated runtime. Another technique that can 
reduce message exchanges is to piggy-back new task 
dispatches when acknowledging result delivery. [7] 
Using both task bundling and piggy-backing, we can 
reduce the average number of message exchanges 
per task to be close to zero, by increasing the bundle 
size. In practice, we find that performance degrades 
for bundle sizes of greater than 300 tasks. 

Figure 3 shows the Falkon architecture, including 
both the data management and data-aware scheduler 
components. Individual executors manage their own 
caches, using local eviction policies (e.g. LRU [53]), 
and communicate changes in cache content to the 
dispatcher. The scheduler sends tasks to compute 
nodes, along with the necessary information about 
where to find related input data. Initially, each 
executor fetches needed data from remote persistent 

storage. Subsequent accesses to the same data results 
in executors fetching data from other peer executors 
if the data is already cached elsewhere. The current 
implementation runs a GridFTP server [54] at each 
executor, which allows other executors to read data 
from its cache. This scheduling information are only 
hints, as remote cache state can change frequently 
and is not guaranteed to be 100% in sync with the 
global index. In the event that a data item is not 
found at any of the known cached locations, it 
attempts to retrieve the item from persistent storage; 
if this also fails, the respective task fails. In Figure 3, 
the black dotted lines represent the scheduler 
sending the task to the compute nodes, along with 
the necessary information about where to find input 
data. The red thick solid lines represent the ability 
for each executor to get data from remote persistent 
storage. The blue thin solid lines represent the 
ability for each storage resource to obtain cached 
data from another peer executor. We assume data 
follows the normal pattern found in scientific 
computing, which is to write-once/read-many (the 
same assumption as HDFS makes in the Hadoop 
system [34]). Thus, we avoid complicated and 
expensive cache coherence schemes other parallel 
file systems enforce.  

To support data-aware scheduling, we implement a 
centralized index within the dispatcher that records 
the location of every cached data object; this is 
similar to the centralized NameNode in Hadoop’s 
HDFS [34]. This index is maintained loosely 
coherent with the contents of the executor’s caches 
via periodic update messages generated by the 
executors. In addition, each executor maintains a 
local index to record the location of its cached data 
objects. We believe that this hybrid architecture 
provides a good balance between latency to the data 
and good scalability. In previous work [10, 24], we 
offered a deeper analysis in the difference between a 
centralized index and a distributed one, and under 
what conditions a distributed index is preferred.  

 
Figure 3: Architecture overview of Falkon extended 

with data diffusion (data management and data-
aware scheduler) 

We implement four dispatch policies: first-available 
(FA), max-cache-hit (MCH), max-compute-util 
(MCU), and good-cache-compute (GCC). 
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The FA policy ignores data location information 
when selecting an executor for a task; it simply 
chooses the first available executor, and provides the 
executor with no information concerning the 
location of data objects needed by the task. Thus, the 
executor must fetch all data needed by a task from 
persistent storage on every access. This policy is 
used for all experiments that do not use data 
diffusion. 

The MCH policy uses information about data 
location to dispatch each task to the executor with 
the largest amount of data needed by that task. If 
that executor is busy, task dispatch is delayed until 
the executor becomes available. This strategy is 
expected to reduce data movement operations 
compared to first-cache-available and max-compute-
util, but may lead to load imbalances where 
processor utilization will be sub optimal, if nodes 
frequently join and leave. 

The MCU policy leverages data location 
information, attempting to maximize resource 
utilization even at the potential higher cost of data 
movement. It sends a task to an available executor, 
preferring executors with the most needed data 
locally.  

The GCC policy is a hybrid MCH/MCU policy. The 
GCC policy sets a threshold on the minimum 
processor utilization to decide when to use MCH or 
MCU. We define processor utilization to be the 
number of processors with active tasks divided by 
the total number of processors allocated. MCU used 
a threshold of 100%, as it tried to keep all allocated 
processors utilized. We find that relaxing this 
threshold even slightly (e.g., 90%) works well in 
practice as it keeps processor utilization high and it 
gives the scheduler flexibility to improve cache hit 
rates significantly when compared to MCU alone.  

3.2 Distributing the Falkon Architecture 
Significant engineering efforts were needed to get 
Falkon to work on systems such as the Blue Gene/P 
efficiently at large scale. In order to improve 
Falkon’s performance and scalability, we developed 
alternate implementation and distributed the Falkon 
architecture.  

Alternative Implementations: Performance depends 
critically on the behavior of our task dispatch 
mechanisms. The initial Falkon implementation was 
100% Java, and made use of GT4 Java WS-Core to 
handle Web Services communications. [50] The 
Java-only implementation works well in typical 
Linux clusters and Grids, but the lack of Java on the 
Blue Gene/L, Blue Gene/P, and SiCortex prompted 
us to re-implement some functionality in C. Table 1 
has a summary of the differences between the two 
implementations. 

In order to keep the implementation simple that 
would work on these specialized systems, we used a 
simple TCP-based protocol (to replace the prior WS-
based protocol), internally between the dispatcher 

and the executor. We implemented a new 
component called TCPCore to handle the TCP-based 
communication protocol. TCPCore is a component 
to manage a pool of threads that lives in the same 
JVM as the Falkon dispatcher, and uses in-memory 
notifications and shared objects for communication. 
For performance reasons, we implemented persistent 
TCP sockets so connections can be reused across 
tasks.  

Table 1: Feature comparison between the Java and 
C Executor implementations 

Description Java C 
Robustness high Medium 

Security 
GSITransport, 

GSIConversation, 
GSIMessageLevel

None 
could 

support SSL 
Communication 

Protocol 
WS-based TCP-based 

Error Recovery yes Yes 
Lifetime 

Management 
yes No 

Concurrent 
Tasks 

yes No 

Push/Pull 
Model 

PUSH 
notification based PULL 

Firewall no yes 

NAT / Private 
Networks 

no in general 
yes in certain 

cases 
yes 

Persistent 
Sockets 

no - GT4.0 
yes - GT4.2 

yes 

Performance 
Medium~High 

600~3700 tasks/s 

High 
1700~3200 

tasks/s 

Scalability High ~ 54K CPUs Medium ~ 
10K CPUs 

Portability medium 
high  

(needs 
recompile) 

Data Caching yes no 
 

Distributed Falkon Architecture: The original 
Falkon architecture [7] use a single dispatcher 
(running on one login node) to manage many 
executors (running on compute nodes). The 
architecture of the Blue Gene/P is hierarchical, in 
which there are 10 login nodes, 640 I/O nodes, and 
40K compute nodes. This led us to the offloading of 
the dispatcher from one login node (quad-core 
2.5GHz PPC) to the many I/O nodes (quad-core 
0.85GHz PPC); Figure 4 shows the distribution of 
components on different parts of the Blue Gene/P.  

Experiments show that a single dispatcher, when 
running on modern node with 4 to 8 cores at 2GHz+ 
and 2GB+ of memory, can handle thousands of 
tasks/sec and tens of thousands of executors. 
However, as we ramped up our experiments to 160K 
processors (each executor running on one 
processor), the centralized design began to show its 
limitations. One limitation (for scalability) was the 
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fact that our implementation maintained persistent 
sockets to all executors (two sockets per executor). 
With the current implementation, we had trouble 
scaling a single dispatcher to 160K executors (320K 
sockets). Another motivation for distributing the 
dispatcher was to reduce the load on login nodes. 
The system administrators of the Blue Gene/P did 
not approve of the high system utilization (both 
memory and processors) of a login node for 
extended periods of time when we were running 
intense workloads. 

 
Figure 4: 3-Tier Architecture Overview 

Our change in architecture from a centralized one to 
a distributed one allowed each dispatcher to manage 
a disjoint set of 256 executors, without requiring any 
inter-dispatcher communication. We did however 
had to implement additional client-side functionality 
to load balance task submission across many 
dispatchers, and to ensure that it did not overcommit 
tasks that could cause some dispatchers to be 
underutilized while others queued up tasks. Our new 
architecture allowed Falkon to scale to 160K 
processors while minimizing the load on the login 
nodes. 

Reliability Issues at Large Scale: We discuss 
reliability only briefly here, to explain how our 
approach addresses this critical requirement. The 
Blue Gene/L has a mean-time-to-failure (MTBF) of 
10 days [1], which can pose challenges for long-
running applications. When running loosely coupled 
applications via Swift and Falkon, the failure of a 
single node only affects the task(s) that were being 
executed by the failed node at the time of the failure. 
I/O node failures only affect their respective psets 
(256 processors); these failures are identified by 
heartbeat messages or communication failures. 

Falkon has mechanisms to identify specific errors, 
and act upon them with specific actions. Most errors 
are generally passed back up to the application 
(Swift) to deal with them, but other (known) errors 
can be handled by Falkon directly by rescheduling 
the tasks. Falkon can suspend offending nodes if too 
many tasks fail in a short period of time. Swift 
maintains persistent state that allows it to restart a 
parallel application script from the point of failure, 
re-executing only uncompleted tasks. There is no 
need for explicit check-pointing as is the case with 
MPI applications; check-pointing occurs inherently 
with every task that completes and is communicated 
back to Swift.  

3.3 Monitoring 
In order to make visualizing the state of Falkon 
easier, we have formatted various Falkon logs to be 
printed in a specific format that can be read by the 
GKrellm [55] monitoring GUI to display real time 
state information. Figure 5 shows 1 million tasks 
(sleep 60) executed on 160K processors on the IBM 
Blue Gene/P supercomputer.  

 
Figure 5: Monitoring via GKrellm while running 

1M tasks on 160K processors 

Overall, it took 453 seconds to complete 1M tasks, 
with an ideal time being 420 seconds, achieving 
93% efficiency. To place this benchmark in context, 
of what an achievement it is to be able to run 1 
million tasks in 7.5 minutes, others [56] have 
managed to run 1 million jobs in 6 months. Grant it 
that the 1 million jobs they referred to in [56] were 
real computations with real data, and not just “sleep 
60” tasks, due to the large overheads of scheduling 
jobs through Condor [29] and other production local 
resource managers, running 1 million jobs, no matter 
how short they are, will likely still take on the order 
of days. 

3.4 Ease of Use  
The Swift parallel programming system already 
supported a wide variety of resource managers, such 
as GRAM, PBS, Condor, and others, through a 
concept called providers. Implementing a new 
provider specific for Falkon was a simple one day 
effort, consuming 840 lines of code. This is 
comparable to GRAM2 provider (850 lines), 
GRAM4 provider (517 lines), and the Condor 
provider (575 lines). For applications that are 

FalkonProvisioner FalkonDispatcherFalkonDispatcherI/O NodesLinux Compute Nodes ZeptOS
Global Parallel File System (GPFS)

Localized In-memory Shared File SystemsLocalized In-memory Shared File Systems



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Cluster Computing (2009) 

 

already batch-scheduler aware, interfacing with 
Falkon does not pose a significant challenge. There 
is also a wide array of command line clients and 
scripts that can allow an application to interface with 
Falkon through loosely coupled scripts, rather than a 
JAVA API using web services.  

4. Performance Evaluation 
We use micro-benchmarks to determine 
performance characteristics and potential 
bottlenecks on systems with many cores. This 
section explores the dispatch performance, how it 
compares with other traditional LRMs, efficiency, 
and data diffusion effectiveness. 

4.1 Falkon Task Dispatch Performance  
One key component to achieving high utilization of 
large-scale systems is achieving high task dispatch 
and execution rates. In previous work [7] we 
reported that Falkon with a Java Executor and WS-
based communication protocol achieves 487 
tasks/sec in a Linux cluster (Argonne/Univ. of 
Chicago) with 256 CPUs, where each task was a 
“sleep 0” task with no I/O. We repeated the peak 
throughput experiment on a variety of systems 
(Argonne/Univ. of Chicago Linux cluster, SiCortex, 
and Blue Gene/P) for both versions of the executor 
(Java and C, WS-based and TCP-based respectively) 
at significantly larger scales (see Figure 6). We 
achieved 604 tasks/sec and 2534 tasks/sec for the 
Java and C Executors respectively (Linux cluster, 1 
dispatcher, 200 CPUs), 3186 tasks/sec (SiCortex, 1 
dispatcher, 5760 CPUs), 1758 tasks/sec (Blue 
Gene/P, 1 dispatcher, 4096 CPUs), and 3071 
tasks/sec (Blue Gene/P, 640 dispatchers, 163840 
CPUs). Note that the SiCortex and Blue Gene/P only 
support the C Executors. The throughput numbers 
that indicate “1 dispatcher” are tests done with the 
original centralized dispatcher running on a login 
node. The last throughput of 3071 tasks/sec was 
achieved with the dispatchers distributed over 640 
I/O nodes, each managing 256 processors. 

 
Figure 6: Task dispatch and execution throughput 

for trivial tasks with no I/O (sleep 0) 

To better understand the performance achieved for 
different workloads, we measured performance as a 
function of task length. We made measurements in 

two different configurations: 1) 1 dispatcher up to 
2K processors, and 2) N/256 dispatchers on up to 
N=160K processors, with 1 dispatcher managing 
256 processors. We varied the task lengths from 1 
second to 256 seconds (using sleep tasks with no 
I/O), and ran weak scaling workloads ranging from 
2K tasks to 1M tasks (7 tasks per core). 

Figure 7 investigates the effects of efficiency of 1 
dispatcher running on a faster login node (quad core 
2.5GHz PPC) at relatively small scales. With 4 
second tasks, we can get high efficiency (95%+) 
across the board (up to the measured 2K processors). 
Figure 8 shows the efficiency with the distributed 
dispatchers on the slower I/O nodes (quad core 850 
MHz PPC) at larger scales. It is interesting to notice 
that the same 4 second tasks that offered high 
efficiency in the single dispatcher configuration now 
achieves relatively poor efficiency, starting at 65% 
and dropping to 7% at 160K processors. This is due 
to both the extra costs associated with running the 
dispatcher on slower hardware, and the increasing 
need for high throughputs at large scales. If we 
consider the 160K processor case, based on our 
experiments, we need tasks to be at least 64 seconds 
long to get 90%+ efficiency. Adding I/O to each 
task will further increase the minimum task length in 
order to achieve high efficiency.  

 
Figure 7: Efficiency graph for the Blue Gene/P for 1 

to 2048 processors and task lengths from 1 to 32 
seconds using a single dispatcher on a login node 

 
Figure 8: Efficiency graph for the Blue Gene/P for 
256 to 160K processors and task lengths ranging 

from 1 to 256 seconds using N dispatchers with each 
dispatcher running on a separate I/O node 
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To summarize: distributing the Falkon dispatcher 
from a single (fast) login node to many (slow) I/O 
nodes has both advantages and disadvantages. The 
advantage is that we achieve good scalability to 
160K processors, but at the cost of significantly 
worse efficiency at small scales (less than 4K 
processors) and short tasks (1 to 8 seconds). We 
believe both approaches are valid, depending on the 
application task execution distribution and scale of 
the application.  

The experiments presented in Figure 6, Figure 7, and 
Figure 8 were conducted using one million tasks per 
run. We thought it would be worthwhile to conduct a 
larger scale experiment, with one billion tasks, to 
validate that the Falkon service can reliably run 
under heavy stress for prolonged periods of time. 
Figure 9 depicts the endurance test running one 
billion tasks (sleep 0) on 128 processors in a Linux 
cluster, which took 19.2 hours to complete. We ran 
the distributed version of the Falkon dispatcher 
using four instances on an 8-core server using 
bundling of 100, which allowed the aggregate 
throughput to be four times higher than that reported 
in Figure 6. Over the course of the experiment, the 
throughput decreased from 17K+ tasks/sec to just 
over 15K+ tasks/sec, with an average throughput of 
15.6K tasks/sec. The loss in throughput is attributed 
to a memory leak in the client, which was making 
the free heap size smaller and smaller, and hence 
invoking the garbage collection more frequently. We 
estimated that 1.5 billion tasks would have been 
sufficient to exhaust the 1.5GB heap we had 
allocated the client, and the client would have likely 
failed at that point. Nevertheless, 1.5 billion tasks is 
larger than any application parameter space we have 
today, and is many orders of magnitude larger than 
what other systems support. The following sub-
section attempts to compare and contrast the 
throughputs achieved between Falkon and other 
local resource managers. 

 
Figure 9: Endurance test with 1B tasks on 128 CPUs 

in ANL/UC cluster 

4.2 Comparing Falkon to Other LRMs 
and Solutions  
It is instructive to compare with task execution rates 
achieved by other local resource managers. In 
previous work [7], we measured Condor (v6.7.2, via 

MyCluster [40]) and PBS (v2.1.8) performance in a 
Linux environment (the same environment where we 
test Falkon and achieved 2534 tasks/sec 
throughputs). The throughputs we measured for PBS 
was 0.45 tasks/sec and for Condor was 0.49 
tasks/sec; other studies in the literature have 
measured Condor’s performance as high as 22 
tasks/sec in a research prototype called Condor J2 
[30].  

We also tested the performance of Cobalt (the Blue 
Gene/P’s LRM), which yielded a throughput of 
0.037 tasks/sec; recall that Cobalt also lacks the 
support for single processor tasks, unless HTC-mode 
[45] is used. HTC-mode means that the termination 
of a process does not release the allocated resource 
and initiates a node reboot, after which the launcher 
program is used to launch the next application. 
There is still some management (which we 
implemented as part of Falkon) that needs to happen 
on the compute nodes, as exit codes from previous 
application invocations need to be persisted across 
reboots (e.g. to shared file system), sent back to the 
client, and have the ability to launch an arbitrary 
application from the launcher program. Running 
Falkon on the BlueGene/L in conjunction with 
Cobalt’s HTC-mode support yielded a 0.29 task/sec 
throughput. The low throughput was attributed to the 
fact that nodes had to be rebooted across jobs, and 
node bootup was serialized in the Cobalt scheduler. 
We only investigated the performance of HTC-mode 
on the Blue Gene/L at small scales, as we realized 
that it will not be sufficient for MTC applications 
due to the high overhead of node reboots across 
tasks; we did not pursue it at larger scales, or on the 
Blue Gene/P.  

Cope et al. [43] also explored a similar space as we 
have, leveraging HTC-mode [45] support in Cobalt 
on the Blue Gene/L. The authors had various 
experiments, which we tried to replicate for 
comparison reasons. The authors measured an 
overhead of 46.4±21.2 seconds for running 60 
second tasks on 1 pset of 64 processors on the Blue 
Gene/L. In a similar experiment in running 64 
second tasks on 1 pset of 256 processors on the Blue 
Gene/P, we achieve an overhead of 1.2±2.8 seconds, 
more than an order of magnitude better. Another 
comparison is the task startup time, which they 
measured to be on average about 25 seconds, but 
sometimes as high as 45 seconds; the startup times 
for tasks in our system are 0.8±2.7 seconds. Another 
comparison is average task load time by number of 
simultaneously submitted tasks on a single pset and 
executable image size of 8MB. The authors reported 
an average of 40~80 seconds for 32 simultaneous 
tasks on 32 compute nodes on the Blue Gene/L (1 
pset, 64 CPUs). We measured our overheads of 
executing an 8MB binary to be 9.5±3.1 seconds on 
64 compute nodes on the Blue Gene/P (1 pset, 256 
CPUs).  
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Finally, Peter’s et al. from IBM also recently 
published some performance numbers on the HTC-
mode native support in Cobalt [44], which shows a 
similar one order of magnitude difference between 
HTC-mode on Blue Gene/L and our Falkon support 
for MTC workloads on the Blue Gene/P. For 
example, the authors reported a workload of 32K 
tasks on 8K processors and 32 dispatchers take 
182.85 seconds to complete (an overhead of 5.58ms 
per task), but the same workload on the same 
number of processors using Falkon completed in 
30.31 seconds with 32 dispatchers (an overhead of 
0.92ms per task). Note that a similar workload of 
1M tasks on 160K processors run by Falkon can be 
completed in as little as 368 seconds (0.35ms per 
task overheads).  

4.3 Data Diffusion Performance 
We measured the performance of the data-aware 
scheduler on various workloads, both with static and 
dynamic resource provisioning, and ran experiments 
on the ANL/UC TeraGrid [58] (up to 100 nodes, 200 
processors). The Falkon service ran on an 8-core 
Xeon@2.33GHz, 2GB RAM, Java 1.5, 100Mb/s 
network, and 2 ms latency to the executors. The 
persistent storage was GPFS [59] with <1ms latency 
to executors.  

We investigate three diverse workloads: 
Monotonically-Increasing (MI) and All-Pairs (AP). 
We use the MI workload to explore the dynamic 
resource provisioning support in data diffusion, and 
the various scheduling policies and cache sizes. We 
use the AP workload to compare data diffusion with 
active storage [60].  

4.3.1 Data-Aware Scheduler Performance 
In order to understand the performance of the data-
aware scheduler, we developed several micro-
benchmarks to test scheduler performance. We used 
the FA policy that performed no I/O as the baseline 
scheduler, and tested the various scheduling policies. 
We measured overall achieved throughput in terms 
of scheduling decisions per second and the 
breakdown of where time was spent inside the 
Falkon service. We conducted our experiments 
using 32 nodes; our workload consisted of 250K 
tasks, where each task accessed a random file 
(uniform distribution) from a dataset of 10K files of 
1B in size each. We use files of 1 byte to measure 
the scheduling time and cache hit rates with minimal 
impact from the actual I/O performance of persistent 
storage and local disk. We compare the FA policy 
using no I/O (sleep 0), FA policy using GPFS, MCU 
policy, MCH policy, and GCC policy. The 
scheduling window size was set to 100X the number 
of nodes, or 3200. We also used 0.8 as the CPU 
utilization threshold in the GCC policy to determine 
when to switch between the MCH and MCU 
policies. Figure 10 shows the scheduler performance 
under different scheduling policies.  

We see the throughput in terms of scheduling 
decisions per second range between 2981/sec (for 
FA without I/O) to as low as 1322/sec (for MCH). 
Note that for the FA policy, the cost of 
communication is significantly larger than the rest of 
the costs combined, including scheduling. The 
scheduling is quite inexpensive for this policy as it 
simply load balances across all workers. However, 
we see that with the data-aware policies, the 
scheduling costs (red and light blue areas) are 
significant.  

 
Figure 10: Data-aware scheduler performance and 
code profiling for the various scheduling policies 

4.3.2 Monotonically Increasing Workload  
We investigated the performance of the FA, MCH, 
MCU, and GCC policies, while also analyzing cache 
size effects by varying node cache size (1GB to 
4GB). The MI workload has a high I/O to compute 
ratio (10MB:10ms). The dataset is 100GB large 
(10K x 10MB files). Each task reads one file chosen 
at random (uniform distribution) from the dataset, 
and computes for 10ms. The arrival rate is initially 1 
task/sec and is increased by a factor of 1.3 every 60 
seconds to a maximum of 1000 tasks/sec. The 
function varies arrival rate A from 1 to 1000 in 24 
distinct intervals makes up 250K tasks and spans 
1415 seconds; we chose a maximum arrival rate of 
1000 tasks/sec as that was within the limits of the 
data-aware scheduler, and offered large aggregate 
I/O requirements at modest scales. This workload 
aims to explore a varying arrival rate under a 
systematic increase in task arrival rate, to explore 
the data-aware scheduler’s ability to optimize data 
locality with an increasing demand.  

The baseline experiment (FA policy) ran each task 
directly from GPFS, using dynamic resource 
provisioning. Aggregate throughput matches 
demand for arrival rates up to 59 tasks/sec, but 
remains flat at an average of 4.4Gb/s beyond that. 
The workload execution time was 5011 seconds, 
yielding 28% efficiency (ideal being 1415 seconds).  

We ran the same workload with data diffusion with 
varying cache sizes per node (1GB to 4GB) using 
the GCC policy, optimizing cache hits while keeping 
processor utilization high (90%). The working set 
was 100GB, and with a per-node cache size of 1GB, 

0

1

2

3

4

5

first-
available

without I/O

first-
available
with I/O

max-
compute-util

max-cache-
hit

good-
cache-

compute

C
P

U
 T

im
e 

p
er

 T
as

k 
(m

s)

0

1000

2000

3000

4000

5000

Th
ro

u
gh

pu
t 

(t
as

ks
/s

ec
)

Task Submit
Notification for Task Availability
Task Dispatch (data-aware scheduler)
Task Results (data-aware scheduler)
Notification for Task Results
WS Communication
Throughput (tasks/sec)



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Cluster Computing (2009) 

 

1.5GB, 2GB, and 4GB caches, we get aggregate 
cache sizes of 64GB, 96GB, 128GB, and 256GB. 
The 1GB and 1.5GB caches cannot fit the working 
set in cache, while the 2GB and 4GB cache can.  

For the GCC policy with 1GB caches, throughput 
keeps up with demand better than the FA policy, up 
to 101 tasks/sec arrival rates (up from 59), at which 
point the throughput reached an average of 5.2Gb/s. 
Once the working set caching reaches a steady state, 
the throughput reaches 6.9Gb/s. The overall cache 
hit rate was 31%, resulting in a 57% higher 
throughput than GPFS. The workload execution 
time is reduced to 3762 seconds (from 5011 
seconds), with 38% efficiency.  

Increasing the cache size to 2GB (128GB 
aggregate), the aggregate throughput is close to the 
demand (up to the peak of 80Gb/s) for the entire 
experiment. We attribute this good performance to 
the ability to cache the entire working set and then 
schedule tasks to the nodes that have required data 
to achieve cache hit rates approaching 98%. With an 
execution time of 1436 seconds, efficiency was 
98.5%.  

Both the MCH and MCU policies performed 
significantly worse than GCC, due to them being too 
rigid and causing either unnecessary transfers over 
the network, or leaving processors idle. However, 
both MCH and MCU still managed to outperform 
the baseline FA policy. 

Figure 11 summarizes the aggregate I/O throughput 
measured in each of the experiments conducted. We 
present in each case first, as the solid bars, the 
average throughput achieved from start to finish, 
partitioned among local cache, remote cache, and 
GPFS, and second, as a black line, the “peak” 
(actually 99th percentile) throughput achieved during 
the execution. The second metric is interesting 
because of the progressive increase in job 
submission rate: it may be viewed as a measure of 
how far a particular method can go in keeping up 
with user demands. 

We see that the FA policy had the lowest average 
throughput of 4Gb/s, compared to between 5.3Gb/s 
and 13.9Gb/s for data diffusion (GCC, MCH, and 
MCU with various cache sizes), and 14.1Gb/s for 
the ideal case. In addition to having higher average 
throughputs, data diffusion also achieved 
significantly throughputs towards the end of the 
experiment (the black bar) when the arrival rates are 
highest, as high as 81Gb/s as opposed to 6Gb/s for 
the FA policy.  

Note also that GPFS file system load (the red 
portion of the bars) is significantly lower with data 
diffusion than for the GPFS-only experiments (FA); 
in the worst case, with 1GB caches where the 
working set did not fit in cache, the load on GPFS is 
still high with 3.6Gb/s due to all the cache misses, 
while FA tests had 4Gb/s load. However, as the 
cache sizes increased and the working set fit in 

cache, the load on GPFS became as low as 0.4Gb/s; 
similarly, the network load was considerably lower, 
with the highest values of 1.5Gb/s for the MCU 
policy, and less than 1Gb/s for the other policies. 

 
Figure 11: MI workload average and peak (99 

percentile) throughput 

The response time (see Figure 12) is probably one of 
the most important metrics interactive applications. 
Average Response Time (ARi) is the end-to-end time 
from task submission to task completion notification 
for task i; ARi = WQi+TKi+Di, where WQi is the 
wait queue time, TKi is the task execution time, and 
Di is the delivery time to deliver the result.  

 
Figure 12: MI workload average response time 

We see a significant different between the best data 
diffusion response time (3.1 seconds per task) to the 
worst data diffusion (1084 seconds) and the worst 
GPFS (1870 seconds). That is over 500X difference 
between the data diffusion GCC policy and the FA 
policy response time. A principal factor influencing 
the average response time is the time tasks spend in 
the Falkon wait queue. In the worst (FA) case, the 
queue length grew to over 200K tasks as the 
allocated resources could not keep up with the 
arrival rate. In contrast, the best (GCC with 4GB 
caches) case only queued up 7K tasks at its peak. 
The ability to keep the wait queue short allowed data 
diffusion to keep average response times low (3.1 
seconds), making it a better for interactive 
workloads.  

4.3.3 All-Pairs Workload Evaluation 
In order to compare data diffusion with other related 
work, we implemented a common workload called 
All-Pairs (AP) [60]. This related work is part of the 
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Chirp [61] project. We call the All-Pairs use of 
Chirp active storage. Chirp has several 
contributions, such as delivering an implementation 
that behaves like a file system and maintains most of 
the semantics of a shared filesystem, and offers 
efficient distribution of datasets via a spanning tree 
making Chirp ideal in scenarios with a slow and 
high latency data source. However, Chirp does not 
address data-aware scheduling, so when used by All-
Pairs, it typically distributes an entire application 
working data set to each compute node local disk 
prior to the application running. This requirement 
hinders active storage from scaling as well as data 
diffusion, making large working sets that do not fit 
on each compute node local disk difficult to handle, 
and producing potentially unnecessary transfers of 
data. Data diffusion only transfers the minimum data 
needed per job.  

Variations of the AP problem occur in many 
applications. For example when we want to 
understand the behavior of a new function F on sets 
A and B, or to learn the covariance of sets A and B 
on a standard inner product F. [60] The AP problem 
is easy to express in terms of two nested for loops 
over some parameter space. This regular structure 
also enables the optimization of its data access 
operations.  

Thain et al [60] conducted experiments with 
biometrics and data mining workloads using Chirp. 
The most data-intensive workload was where each 
function executed for 1 second to compare two 
12MB items, for an I/O to compute ratio of 
24MB:1000ms. At the largest scale (50 nodes and 
500x500 problem size), we measured an efficiency 
of 60% for the active storage implementation, and 
3% for the demand paging (to be compared to the 
GPFS performance we cite). These experiments 
were conducted in a campus wide heterogeneous 
cluster with nodes at risk for suspension, network 
connectivity of 100Mb/s between nodes, and a 
shared file system rated at 100Mb/s from which the 
dataset needed to be transferred to the compute 
nodes.  

Due to differences in our testing environments, a 
direct comparison is difficult, but we compute the 
best case for active storage as defined in [60], and 
compare the data diffusion performance against this 
best case. Our environment has 100 nodes (200 
processors) which are dedicated for the duration of 
the allocation, with 1Gb/s network connectivity 
between nodes, and a parallel file system (GPFS) 
rated at 8Gb/s. For the 500x500 workload, data 
diffusion achieves a throughput that is 80% of the 
best case of all data accesses occurring to local disk 
(see Figure 13).  

We computed the best case for active storage to be 
96%, however in practice, based on the efficiency of 
the 50 node case from previous work [60] which 
achieved 60% efficiency, we believe the 100 node 

case would not perform significantly better than the 
80% efficiency of data diffusion. Running the same 
workload through Falkon directly against a parallel 
file system achieves only 26% of the ideal 
throughput.  

In order to push data diffusion harder, we made the 
workload 10X more data-intensive by reducing the 
compute time from 1 second to 0.1 seconds, yielding 
a I/O to compute ratio of 24MB:100ms. For this 
workload, the throughput steadily increased to about 
55Gb/s as more local cache hits occurred. We found 
extremely few cache misses, which indicates the 
high data locality of the AP workload. Data 
diffusion achieved 75% efficiency. Active storage 
and data diffusion transferred similar amounts of 
data over the network (1536GB for active storage 
and 1528GB for data diffusion with 0.1 sec compute 
time and 1698GB with the 1 sec compute time 
workload) and to/from the parallel file system 
(12GB for active storage and 62GB and 34GB for 
data diffusion for the 0.1 sec and 1 sec compute time 
workloads respectively). The similarities in 
bandwidth usage manifested themselves in similar 
efficiencies, 75% for data diffusion and 91% for the 
best case active storage. 

In order to explore larger scale scenarios, we 
emulated (ran the entire Falkon stack on 200 
processors with multiple executors per processor and 
emulated the data transfers) an IBM Blue Gene/P. 
We configured the Blue Gene/P with 4096 
processors, 2GB caches per node, 1Gb/s network 
connectivity, and a 64Gb/s parallel file system. We 
also increased the problem size to 1000x1000 (1M 
tasks), and set the I/O to compute ratios to 
24MB:4sec (each processor on the Blue Gene/P is 
about ¼ the speed of those in our 100 node cluster). 
On the emulated Blue Gene/P, we achieved an 
efficiency of 86%. The throughputs steadily 
increased up to 180Gb/s (of a theoretical upper 
bound of 187Gb/s). It is possible that our emulation 
was optimistic due to a simplistic modeling of the 
Torus network, however it shows that the scheduler 
scales well to 4K processors and is able to do 870 
scheduling decisions per second to complete 1M 
tasks in 1150 seconds. The best case active storage 
yielded only 35% efficiency. We justify the lower 
efficiency of the active storage due to the significant 
time that is spent to distribute the 24GB dataset to 
1K nodes via the spanning tree. Active storage used 
12.3TB of network bandwidth (node-to-node 
communication) and 24GB of parallel file system 
bandwidth, while data diffusion used 4.7TB of 
network bandwidth, and 384GB of parallel file 
system bandwidth.  

In reality, the best case active storage would require 
cache sizes of at least 24GB to fit the 1000x1000 
problem size, while the existing 2GB cache sizes for 
the Blue Gene/P would only be sufficient for an 
83X83 problem. This comparison is not only 
emulated, but also hypothetical. Nevertheless, it is 
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interesting to see the significant difference in 
efficiency between data diffusion and active storage 
at this larger scale.  

 
Figure 13: AP workload efficiency for 500x500 

problem size on 200 processor cluster and 
1000x1000 problem size on the Blue Gene/P 

supercomputer with 4096 processors 

Our comparison between data diffusion and active 
storage fundamentally boils down to a comparison 
of pushing data versus pulling data. The active 
storage implementation pushes all the needed data 
for a workload to all nodes via a spanning tree. With 
data diffusion, nodes pull only the files immediately 
needed for a task, creating an incremental spanning 
forest (analogous to a spanning tree, but one that 
supports cycles) at runtime that has links to both the 
parent node and to any other arbitrary node or 
persistent storage. We measured data diffusion to 
perform comparably to active storage on our 200 
processor cluster, but differences exist between the 
two approaches. Data diffusion is more dependent 
on having a well balanced persistent storage for the 
amount of computing power, but can scale to larger 
number of nodes due to the more selective nature of 
data distribution. Furthermore, data diffusion only 
needs to fit the per task working set in local caches, 
rather than an entire workload working set as is the 
case for active storage.  

5. Applications 
We have found many real applications that are a 
better fit for MTC than HTC or HPC. Their 
characteristics include having a large number of 
small parallel jobs, a common pattern in many 
scientific applications [6]. They also use files 
(instead of messages, as in MPI) for intra-processor 
communication, which tends to make these 
applications data intensive.  

We have identified various loosely coupled 
applications from many domains as potential good 
candidates that have these characteristics to show 
examples of many-task computing applications. 
These applications cover a wide range of domains, 
from astronomy, physics, astrophysics, 
pharmaceuticals, bioinformatics, biometrics, 
neuroscience, medical imaging, chemistry, climate 
modeling, economics, and data analytics. They often 
involve many tasks, ranging from tens of thousands 

to billions of tasks, and have a large variance of task 
execution times ranging from hundreds of 
milliseconds to hours. Furthermore, each task is 
involved in multiple reads and writes to and from 
files, which can range in size from kilobytes to 
gigabytes. These characteristics made traditional 
resource management techniques found in HTC 
inefficient; also, although some of these applications 
could be coded as HPC applications, due to the wide 
variance of the arrival rate of tasks from many users, 
an HPC implementation would also yield poor 
utilization. Furthermore, the data intensive nature of 
these applications can quickly saturate parallel file 
systems at even modest computing scales. 

Many of the applications presented in this section 
were executed via the Swift parallel programming 
system [6], which in turn used Falkon, although 
some applications are coded directly against the 
Falkon APIs. All these applications pose significant 
challenges to traditional resource management found 
in HPC and HTC, from both job management and 
storage management perspective, and are in critical 
need of MTC enabled middleware. This section 
discusses these applications in more details, and 
explores their performance scalability across a wide 
range of systems, such as clusters, grids, and 
supercomputers. 

5.1 Functional Magnetic Resonance 
Imaging 
We note that for each volume, each individual task 
in the fMRI [62] workflow required just a few 
seconds on an ANL_TG cluster node, so it is quite 
inefficient to schedule each job over GRAM and 
PBS, since the overhead of GRAM job submission 
and PBS resource allocation is large compared with 
the short execution time. In Figure 14 we show the 
execution time for different input data sizes for the 
fMRI workflow.  

We submitted from UC_SUBMIT to ANL_TG and 
measured the turnaround time for the workflows. A 
120-volume input (each volume consists of an image 
file of around 200KB and a header file of a few 
hundred bytes) involves 480 computations for the 
four stages, whereas the 480-volume input has 1960 
computation tasks. The GRAM+PBS submission 
had low throughput although it could have 
potentially used all the available nodes on the site 
(62 nodes to be exact, as we only used the IA64 
nodes). We can however bundle small jobs together 
using the clustering mechanism in Swift, and we 
show the execution time was reduced by up to 4 
times (jobs were bundled into roughly 8 groups, as 
the grouping of jobs was a dynamic process) with 
GRAM and clustering, as the overhead was 
amortized by the bundled jobs. The Falkon 
execution service (with 8 worker nodes) however 
further cuts down the execution time by 40-70%, as 
each job was dispatched efficiently to the workers. 
We carefully chose the bundle size for the clustering 
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so that the clustered jobs only required 8 nodes to 
execute. This choice allowed us to compare 
GRAM/Clustering against Falkon, which used 8 
nodes, fairly. We also experimented with different 
bundle sizes for the 120-volume run, but the overall 
variations for groups of 4, 6 and 10 were not 
significant (within 10% of the total execution time 
for the 8 groups). 

 
Figure 14 Execution Time for the fMRI Workflow 

5.2 MolDyn (Chemistry Domain) 
The goal of this molecular dynamics (MolDyn) 
application is to optimize and automate the 
computational workflow that can be used to generate 
the necessary parameters and other input files for 
calculating the solvation free energy of ligands, and 
can also be extended to protein-ligand binding 
energy. Solvation free energy is an important 
quantity in Computational Chemistry with a variety 
of applications, especially in drug discovery and 
design. The accurate prediction of solvation free 
energies of small molecules in water is still a largely 
unsolved problem, which is mainly due to the 
complex nature of the water-solute interactions. In 
the study, a library of 244 neutral ligands is chosen 
for free energy perturbation calculations. This 
library contains compounds with various chemical 
functional groups. Also, the absolute free energies of 
solvation for these compounds are known 
experimentally, and will serve as a tool to 
benchmark our calculations. All the structures were 
obtained from the NIST Chemistry WebBook 

database [63]. 

Our experiment performed a 244 molecule run, 
which is composed of 20497 jobs that should take 
less than 957.3 CPU hours to complete; in practice, 
it takes even less as some job executions are shared 
between molecules. Figure 15 shows the resource 
utilization in relation to Falkon queue length as the 
experiment progressed. We see that as resources 
were acquired (using the dynamic resource 
provisioning, starting with 0 CPUs and ending with 
216 CPUs at the peak), the CPU utilization was near 
perfect (green means utilized, red mean idle) with 
the exception of the end of the experiment as the last 
few jobs completed (the last 43 seconds). Figure 15 
shows the same information on a per task basis. The 
entire experiment with the exception of the last 43 

seconds consumed 866.33 CPU hours and wasted 
0.09 CPU hours (99.98971% efficiency); if we 
include the last 43 seconds as the experiment was 
winding down, the workflow consumed 867.1 CPU 
hours and it wasted 1.78 CPU hours, with a final 
efficiency of 99.7949013%. The experiment 
completed in 15091 seconds on a maximum of 216 
processors, which results in a speedup of 206.9; note 
the average number of processors for the entire 
experiment was 207.26 CPUs, so the speedup of 
206.9 reflects the 99.79% computed efficiency.   

 
Figure 15: 244 Molecule MolDyn application; 

summary view showing executor’s utilization in 
relation to the Falkon wait queue length as 

experiment time progressed 

It is worth comparing the performance we obtained 
for MolDyn using Falkon with that of MolDyn over 
traditional GRAM/PBS. Due to reliability issues 
(with GRAM and PBS) when submitting 20K jobs 
over the course of hours, we were not able to 
successfullyfinish the same 244 molecule run over 
GRAM/PBS. We therefore tried to do some smaller 
experiments, in the hopes that it would increase the 
probability of doing a successful run. We tried 
several runs with 50 molecules (4201 of jobs for the 
50 molecule run, instead of 20497 jobs for the 244 
molecule run); the best execution times we were 
able to achieve for the 50 molecule runs with 
GRAM/PBS (on the same testbed) took 25292 
seconds. We achieved a speedup of only 25.3X 
compared to 206.9X when using Falkon on the same 
workflow and the same Grid site in a similar state.  

We explain this drastic difference mostly due to the 
typical job duration (~200 seconds) and the 
submission rate throttling of 1/5 jobs per second; 
with 200 second jobs, the most concurrent jobs we 
could expect was 40. Increasing the submission rate 
throttle resulted in GRAM/PBS gateway instability, 
or even causing it to stop functioning. Furthermore, 
each node was only using a single processor of the 
dual processors available on the compute nodes due 
to the local site PBS policy that allocates each job an 
entire (dual processor) machine and does not allow 
other jobs to run on allocated machines; it is left up 
to the application to fully utilize the entire machine, 
through multi-threading, or by invoking several 
different jobs to run in parallel on the same machine. 

1239

2510

3683

4808

456
866 992 1123

120
327

546 678

0

1000

2000

3000

4000

5000

6000

120 240 360 480
Input Data Size (Volumes)

T
im

e 
(s

)

GRAM

GRAM/Clustering

Falkon

0

25

50

75

100

125

150

175

200

225

0 1800 3600 5400 7200 9000 10800 12600 14400

Time (sec)

E
xe

cu
to

rs

0

2500

5000

7500

10000

12500

15000

17500

20000

0 1800 3600 5400 7200 9000 10800 12600 14400

T
as

ks

num_all_workers
num_busy_workers
waitQ_length
delivered_tasks



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Cluster Computing (2009) 

 

This is a great example of the benefits of having the 
flexibility to set queue policies per application, 
which is impractical to do in real-world deployed 
systems. 

5.3 Molecular Dynamics: DOCK 
The DOCK (molecular dynamics) application [64] 
deals with virtual screening of core metabolic targets 
against KEGG [65] compounds and drugs. DOCK6 
addresses the problem of “docking” molecules to 
each other. In general, “docking” is the 
identification of the low-energy binding modes of a 
small molecule, or ligand, within the active site of a 
macromolecule, or receptor, whose structure is 
known. A compound that interacts strongly with a 
receptor (such as a protein molecule) associated with 
a disease may inhibit its function and thus act as a 
beneficial drug. Development of antibiotic and 
anticancer drugs is a process fraught with dead ends. 
Each dead end costs potentially millions of dollars, 
wasted years and lives. Computational screening of 
protein drug targets helps researchers prioritize 
targets and determine leads for drug candidates.  

The goal of this project was to 1) validate our ability 
to approximate the binding mechanism of the 
protein’s natural ligand (a.k.a compound that binds), 
2) determine key interaction pairings of chemical 
functional groups from different compounds with 
the protein’s amino acid residues, 3) study the 
correlation between a natural ligand that is similar to 
other compounds and its binding affinity with the 
protein’s binding pocket, and 4) prioritize the 
proteins for further study.  

Running a workload consisting of 934,803 
molecules on 116K CPU cores using Falkon took 
2.01 hours (see Figure 16). The per-task execution 
time was quite varied with a minimum of 1 second, 
a maximum of 5030 seconds, and a mean of 
713±560 seconds. The two-hour run has a sustained 
utilization of 99.6% (first 5700 seconds of 
experiment) and an overall utilization of 78% (due 
to the tail end of the experiment). Note that we had 
allocated 128K CPUs, but only 116K CPUs 
registered successfully and were available for the 
application run; this was due to GPFS contention in 
bootstrapping Falkon on 32 racks, and was fixed in 
later large runs by moving the Falkon framework to 
RAM before starting, and by pre-creating log 
directories on GPFS to avoid lock contention. We 
have made dozens on runs at 32 and 40 rack scales, 
and we have not encountered this specific problem 
since.  

Despite the loosely coupled nature of this 
application, our preliminary results show that the 
DOCK application performs and scales well to 
nearly full scale (116K of 160K CPUs). The 
excellent scalability (99.7% efficiency when 
compared to the same workload at 64K CPUs) was 
achieved only after careful consideration was taken 
to avoid the shared file system, which included the 

caching of the multi-megabyte application binaries, 
and the caching of 35MB of static input data that 
would have otherwise been read from the shared file 
system for each job. Note that each job still had 
some minimal read and write operations to the 
shared file system, but they were on the order of 10s 
of KB (only at the start and end of computations), 
with the majority of the computations being in the 
100s of seconds, with an average of 713 seconds. 

 
Figure 16: 934,803 DOCK5 runs on 118,784 CPU 

cores on Blue Gene/P 

These computations are, however, just the beginning 
of a much larger computational pipeline that will 
screen millions of compounds and tens of thousands 
of proteins. The downstream stages use even more 
computationally intensive and sophisticated 
programs that provide for more accurate binding 
affinities by allowing for the protein residues to be 
flexible and the water molecules to be explicitly 
modeled. Computational screening, which is 
relatively inexpensive, cannot replace the wet lab 
assays, but can significantly reduce the number of 
dead ends by providing more qualified protein 
targets and leads. To grasp the magnitude of this 
application, the largest run we made of 934,803 
tasks we performed represents only 0.09% of the 
search space (1 billion runs) being considered by the 
scientists we are working with; simple calculations 
project a search over the entire parameter space to 
need 20,938 CPU years, the equivalent of 48 days 
on the 160K-core Blue Gene/P. This is a large 
problem that cannot be solved in a reasonable 
amount of time without a supercomputer scale 
resource. Our loosely coupled approach holds great 
promise for making this problem tractable and 
manageable on today’s largest supercomputers. 

5.4 Production Runs in Drug Design 
We have been working extensively with a group of 
researchers at the Midwest Center for Structural 
Genomics at Argonne National Laboratory, who 
have adopted Falkon and use it in their daily 
production runs in modeling three-dimensional 
protein structures towards drug design. Since 
proteins with similar structures tend to behave in 
similar ways, the team compares the modeled 

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0
60

0
12

00
18

00
24

00
30

00
36

00
42

00
48

00
54

00
60

00
66

00
72

00

Time (sec)

T
as

ks
 C

o
m

p
le

te
d

N
u

m
b

er
 o

f 
P

ro
ce

ss
o

rs

0

50

100

150

200

250

300

350

400

450

T
h

ro
u

g
h

p
u

t 
(t

as
ks

/s
ec

)

Processors
Active Tasks
Tasks Completed
Throughput (tasks/sec)



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Cluster Computing (2009) 

 

structures to known proteins in order to predict their 
functions – a computationally intensive task. 

As the Protein Data Bank expands exponentially, it 
becomes more difficult to coax desktop machines to 
do the types of analysis required. They turned to 
Falkon as a way to utilize their existing software 
applications on increasingly large machines, such as 
the IBM Blue Gene/P supercomputer with 160K 
processors. “Falkon has allowed us to ask bigger 
questions and perform experiments on a scale never 
before attempted — or even thought possible,” said 
Andrew Binkowski, one of the main researchers 
involved in performing the productions runs.  “This 
is the difference between comparing a newly 
determined protein structure to a family of related 
proteins versus comparing it to the entire protein 
universe.” The team has done all of this using 
existing software packages that were not designed 
for high-throughput computing or many-task 
computing, and used Falkon to coordinate and drive 
the execution of many loosely-coupled computations 
that are treated as “black boxes” without any 
application-specific code modifications. 

Over the course of 7 months (09/08 – 04/09), this 
group managed to run 2 million production jobs 
consuming 170K CPU hours with a minimum of 
256 concurrent processors, an average of 8192 
processors, and a maximum of 51200 concurrent 
processors; the average per job execution time was 
310 seconds, with a standard deviation of 335 
seconds. 

5.5 Economic Modeling: MARS 
We also evaluated MARS (Macro Analysis of 
Refinery Systems), an economic modeling 
application for petroleum refining developed by D. 
Hanson and J. Laitner at Argonne [66]. This 
modeling code performs a fast but broad-based 
simulation of the economic and environmental 
parameters of petroleum refining, covering over 20 
primary & secondary refinery processes. MARS 
analyzes the processing stages for six grades of 
crude oil (from low-sulfur light to high-sulfur very-
heavy and synthetic crude), as well as processes for 
upgrading heavy oils and oil sands. It includes eight 
major refinery products including gasoline, diesel 
and jet fuel, and evaluates ranges of product shares. 
It models the economic and environmental impacts 
of the consumption of natural gas, the production 
and use of hydrogen, and coal-to-liquids co-
production, and seeks to provide insights into how 
refineries can become more efficient through the 
capture of waste energy. 

While MARS analyzes this large number of 
processes and variables, it does so at a coarse level 
without involving intensive numerics. It consists of 
about 16K lines of C code, and can process many 
internal model execution iterations, with a range 
from 0.5 seconds (1 internal iteration) to hours 
(many thousands of internal iterations) of Blue 

Gene/P CPU time. Using the power of the Blue 
Gene/P we can perform detailed multi-variable 
parameter studies of the behavior of all aspects of 
petroleum refining covered by MARS. 

As a larger and more complex test, we performed a 
2D parameter sweep to explore the sensitivity of the 
investment required to maintain production capacity 
over a 4-decade span on variations in the diesel 
production yields from low sulfur light crude and 
medium sulfur heavy crude oils. This mimics one 
possible segment of the many complex multivariate 
parameter studies that become possible with ample 
computing power. A single MARS model execution 
involves an application binary of 0.5MB, static input 
data of 15KB, 2 floating point input variables and a 
single floating point output variable. The average 
micro-task execution time is 0.454 seconds. To scale 
this efficiently, we performed task-batching of 600 
model runs into a single task, yielding a workload 
with 4KB of input and 4KB of output data, and an 
average execution time of 271 seconds.  

We executed a workload with 600 million model 
runs (1M tasks) on 128K processors on the Blue 
Gene/P (see Figure 17). The experiment consumed 
9.3 CPU years and took 2483 seconds to complete. 
Even at this large scale, the per task execution times 
were quite deterministic with an average of 280±10 
seconds; this means that most processors would start 
and stop executing tasks at about the same time, 
which produces the peaks in task completion rates 
(blue line) that are as high as 4000 tasks/sec. As a 
comparison, a 1 processor experiment using a small 
part of the same workload had an average of 
271±0.3 seconds; this yielded an efficiency of 97% 
with a speedup of 126,892 (ideal speedup being 
130,816).  

 
Figure 17: MARS application (summary view) on 
the Blue Gene/P; 1M tasks using 128K processor 

cores 

5.6 Large-scale Astronomy Application 
Evaluation 
We have implemented the AstroPortal [67, 68] 
which performs the “stacking” of image cutouts 
from different parts of the sky. This function can 
help to statistically detect objects too faint 
otherwise. Astronomical image collections usually 
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cover an area of sky several times (in different 
wavebands, different times, etc). On the other hand, 
there are large differences in the sensitivities of 
different observations: objects detected in one band 
are often too faint to be seen in another survey. In 
such cases we still would like to see whether these 
objects can be detected, even in a statistical fashion. 
There has been a growing interest to re-project each 
image to a common set of pixel planes, then stacking 
images. The stacking improves the signal to noise, 
and after coadding a large number of images, there 
will be a detectable signal to measure the average 
brightness/shape etc of these objects. While this has 
been done for years manually for a small number of 
pointing fields, performing this task on wide areas of 
sky in a systematic way has not yet been done. It is 
also expected that the detection of much fainter 
sources (e.g., unusual objects such as transients) can 
be obtained from stacked images than can be 
detected in any individual image.  

Astronomical surveys produce terabytes of data, and 
contain millions of objects. For example, the SDSS 
DR5 dataset has 320M objects in 9TB of images 
[69]. To construct realistic workloads, we identified 
the interesting objects (for a quasar search) from 
SDSS DR5. The working set we constructed 
consisted of 771,725 objects in 558,500 files, where 
each file was either 2MB compressed or 6MB 
uncompressed, resulting in a total of 1.1TB 
compressed and 3.35TB uncompressed. From this 
working set, various workloads were defined, with 
certain data locality characteristics, varying from the 
lowest locality of 1 (i.e., 1-1 mapping between 
objects and files) to the highest locality of 30 (i.e., 
each file contained an average of 30 objects). 

The AstroPortal was tested on the ANL/UC 
TeraGrid site, with up to 128 processors. The 
experiments investigate the performance and 
scalability of the stacking code in four 
configurations: 1) Data Diffusion (GZ), 2) Data 
Diffusion (FIT), 3) GPFS (GZ), and 4) GPFS (FIT). 
At the start of each experiment, all data is present 
only on the persistent storage system (GPFS). For 
data diffusion we use the MCU policy and cached 
data on local nodes. For the GPFS experiments we 
use the FA policy and perform no caching. GZ 
indicates that the image data is in compressed format 
while FIT indicates that the image data is 
uncompressed.  

Data diffusion can make its largest impact on larger 
scale deployments, and hence we ran a series of 
experiments to capture the performance at a larger 
scale (128 processors) as we vary the data locality. 
We investigated the data-aware scheduler’s ability to 
exploit the data locality found in the various 
workloads and its ability to direct tasks to computers 
on which needed data was cached. We found that the 
data-aware scheduler can get within 90% of the ideal 
cache hit ratios in all cases.  

The following experiment (Figure 18) offers a 
detailed view of the performance (time per stack per 
processor) of the stacking application as we vary the 
locality. The last data point in each case represents 
ideal performance when running on a single node. 
Note that although the GPFS results show 
improvements as locality increases, the results are 
far from ideal. However, we see data diffusion gets 
close to the ideal as locality increases beyond 10. 

 
Figure 18: Performance of the stacking application 

using 128 CPUs for workloads with data locality 
ranging from 1 to 30, using data diffusion and GPFS 

Using data diffusion, we achieve an aggregated I/O 
throughput of 39Gb/s with high data locality, a 
significantly higher rate than with GPFS, which tops 
out at 4Gb/s. These results show the decreased load 
on shared infrastructure (i.e., GPFS), which 
ultimately gives data diffusion better scalability. 

5.7 Montage (Astronomy Domain) 
The Montage [70] workflow demonstrated similar 
job execution time pattern as there were many small 
jobs involved. We show in Figure 19 the comparison 
of the workflow execution time using Swift with 
clustering over GRAM, Swift over Falkon, and MPI. 
The Montage application code we used for 
clustering and Falkon are the same. The code for the 
MPI runs is derived from the same set of source 
code, with the addition of data partitioning and inter-
processor communication, so when multiple 
processors are allocated, each would process part of 
the input datasets, and combine the outputs if 
necessary. The MPI execution was well balanced 
across multiple processors, as the processing for 
each image was similar and the image sizes did not 
vary much. All three approaches needed to go over 
PBS to request for computation nodes, we used 16 
nodes for Falkon and MPI, and also configured the 
clustering for GRAM to be around 16 groups. 

The workflow had twelve stages, and we only show 
the parallel stages and the total execution time in the 
figure (the serial stages ran on a single node, and the 
difference of running them across the three 
approaches was small, so we only included them in 
the total time for comparison purposes). The 
workflow produced a 3x3 square degree mosaic 
around galaxy M16, where there were about 440 
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input images (2MB each), and 2,200 overlappings 
between them. There were two mAdd stages because 
we divided the region into subsets, co-added images 
in each subset, and then co-added the subsets 
together into a final mosaic. We can observe that the 
Falkon execution service performed close to the 
MPI execution, which indicated that jobs were 
dispatched efficiently to the 16 workers. The GRAM 
execution with clustering enabled still did not 
perform as well as the other two, mainly due to PBS 
queuing overhead. It is worth noting that the last 
stage mAdd was parallelized in the MPI version, but 
not for the version for GRAM or Falkon, and hence 
the big difference in execution time between Falkon 
and MPI, and the source of the major difference in 
the entire run between MPI and Falkon. 

Katz et al. [71] have also created a task-graph 
implementation of the Montage code, using Pegasus. 
They did not implement quite the same application 
as us: for example, they ran mOverlap and mImgtbl 
on the portal rather than on compute nodes, and they 
omitted the final mAdd phase. Thus direct 
comparison with Swift over Falkon is difficult. 
However, if we omit the final mAdd phase from the 
comparison, Swift over Falkon is then about 5% 
faster than MPI, and thus also faster than the 
Pegasus approach, as they claimed that MPI 
execution time was the lower bound for them. The 
reasons that Swift over Falkon performs better are 
that MPI incurs initialization and aggregation 
processes, which involve multi-processor 
communications, for each of the parallel stages, 
where Falkon acquires resource at one time and then 
the communications in dispatching tasks from the 
Falkon service to workers have been kept minimum 
(only 2 message exchanges for each job dispatch). 
The Pegasus approach used Condor’s glide-in 
mechanism, where Condor is still a heavy-weight 
scheduler compared with Falkon. 

 
Figure 19: Execution Time for the Montage 

Workflow 

5.8 Data Analytics: Sort and WordCount 
Many programming models and frameworks have 
been introduced to abstract away the management 
details of running applications in distributed 
environments. MapReduce [5] is regarded as a 
power-leveler that solves computation problems 

using brutal-force resources. It provides a simple 
programming model and powerful runtime system 
for processing large datasets. The model is based on 
two key functions: “map” and “reduce”, and the 
runtime system automatically partitions input data 
and schedules the execution of programs in a large 
cluster of commodity machines. MapReduce has 
been applied to document processing problems (e.g. 
distributed indexing, sorting, clustering). 

Applications that can be implemented in 
MapReduce are a subset of those that can be 
implemented in Swift due to the more generic 
programming model found in Swift. Contrasting 
Swift and Hadoop are interesting as it could 
potentially attract new users and applications to 
systems which traditionally were not considered.  

We compared two benchmarks, Sort and 
WordCount, and tested them at different scales and 
with different datasets. [72] The testbed consisted of 
a 270 processor cluster (TeraPort at UChicago). 
Hadoop (the MapReduce implementation from 
Yahoo!) was configured to use Hadoop Distributed 
File System (HDFS), while Swift used Global 
Parallel File System (GPFS). We found Swift 
offered comparable performance with Hadoop, a 
surprising finding due to the choice of benchmarks 
which favored the MapReduce model. In Sorting 
over a range of small to large files, Swift execution 
times were on average 38% higher when compared 
to Hadoop. However, for WordCount, Swift 
execution times were on average 75% lower.  

Our experience with Swift and Hadoop indicate that 
the file systems (GPFS and Hadoop) are the main 
bottlenecks as applications scale; HDFS is more 
scalable than GPFS, but it still has problems with 
small files, and it requires applications be modified. 
There are current efforts in Falkon to enable Swift to 
operate over local disks rather than shared file 
systems and to cache data across jobs, which would 
in turn offers comparable scalability and 
performance to HDFS without the added 
requirements of modifying applications.  

6. Future Work and Conclusions 
Clusters with 62K processor cores (e.g., TACC Sun 
Constellation System, Ranger), Grids (e.g., TeraGrid 
with over a dozen sites and 161K processors), and 
supercomputers with 160K processors (e.g., IBM 
Blue Gene/P) are now available to the scientific 
community. These large HPC systems are 
considered efficient at executing tightly coupled 
parallel jobs within a particular machine using MPI 
to achieve inter-process communication. We 
proposed using HPC systems for loosely-coupled 
applications, which involve the execution of 
independent, sequential jobs that can be individually 
scheduled, and using files for inter-process 
communication. 
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We believe that there is more to HPC than tightly 
coupled MPI, and more to HTC than embarrassingly 
parallel long running jobs. Like HPC applications, 
and science itself, applications are becoming 
increasingly complex opening new doors for many 
opportunities to apply HPC in new ways if we 
broaden our perspective. We hope this paper leaves 
the broader community with a stronger appreciation 
of the fact that applications that are not tightly 
coupled MPI are not necessarily embarrassingly 
parallel. Some have just so many simple tasks that 
managing them is hard. Applications that operate on 
or produce large amounts of data need sophisticated 
data management in order to scale. There exist 
applications that involve many tasks, each composed 
of tightly coupled MPI tasks. Loosely coupled 
applications often have dependencies among tasks, 
and typically use files for inter-process 
communication. Efficient support for these sorts of 
applications on existing large scale systems, 
including future ones (e.g. Blue Gene/Q [73] and 
Blue Water supercomputers) involves substantial 
technical challenges and will have big impact on 
science. 

This paper has shown good support for MTC on a 
variety of resources from clusters, grids, and 
supercomputers through the use of Swift and Falkon. 
Furthermore, we have taken the first steps to address 
data-intensive MTC by offloading much of the I/O 
away from parallel file systems and into the 
network, making full utilization of caches (both on 
disk and in memory) and the full network bandwidth 
of commodity networks (e.g. gigabit Ethernet) as 
well as proprietary and more exotic networks 
(Torus, Tree, and Infiniband). 

We argue that data locality is critical to the 
successful and efficient use of large distributed 
systems for data-intensive applications, where the 
threshold of what constitutes a data-intensive 
application is lowered every year as the performance 
gap between processing power and storage 
performance widens. Large scale data management 
is the next major road block that must be addressed 
in a general way, to ensure data movement is 
minimized by intelligent data-aware scheduling both 
among distributed computing sites, and among 
compute nodes. Storage systems design should shift 
from being decoupled from the computing 
resources, as is commonly found in today’s large-
scale systems. Storage systems must be co-located 
among the compute resources, and make full use of 
all resources at their disposal, from memory, solid 
state storage, spinning disk, and network 
interconnects, giving them unprecedented high 
aggregate bandwidth to supply to an ever growing 
demand for data-intensive applications at the largest 
scales. We believe this shift in large-scale 
architecture design will lead to improving 
application performance and scalability for the most 
demanding data intensive applications as system 

scales continue to increase according to Moore’s 
Law. 

In future work, we will develop both the theoretical 
and practical aspects of building efficient and 
scalable support for both compute-intensive and 
data-intensive MTC. To achieve this, we envision 
building a new distributed data-aware execution 
fabric that scales to at least millions of processors 
and petabytes of storage, and will support HPC, 
MTC, and HTC workloads concurrently and 
efficiently. Clients will be able to submit 
computational jobs into the execution fabric by 
submitting to any compute node (as opposed to 
submitting to single point of failure gateway nodes), 
the fabric will guarantee that jobs will execute at 
least once, and that it will optimize the data 
movement in order to maximize processor utilization 
and minimize data transfer costs. The execution 
fabric will be elastic in which nodes will be able to 
join and leave dynamically, and data will be 
automatically replicated throughout the distributed 
system for both redundancy and performance. We 
will employ a variety of semantic for the data access 
patterns, from full POSIX compliance for generality, 
to relaxed semantics (e.g. eventual consistency on 
data modifications, write-once read-many data 
access patterns) to avoid consistency issues and 
increase scalability. Achieving this level of 
scalability and transparency will allow the data-
aware execution fabric to revolutionize the types of 
applications that can be supported at petascale and 
future exascale levels.  
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