Editorial Manager(tm) for Cluster Computing
Manuscript Draft

Manuscript Number:

Title: Middleware Support for Many-Task Computing
Article Type: HPDC Special Issue

Section/Category:

Keywords: many-task computing; MTC; high-throughput computing; resource management; Falkon;
Swift

Corresponding Author: Dr. Ioan Raicu, Ph.D.
Corresponding Author's Institution: Northwestern University
First Author: Ioan Raicu, PhD

Order of Authors: loan Raicu, PhD; loan Raicu, Ph.D.; Ian Foster, PhD; Mike Wilde, BS; Zhao Zhang, MS;
Kamil Iskra, PhD; Pete Beckman, PhD; Yong Zhao, PhD; Alex Szalay, PhD; Alok Choudhary, PhD; Philip
Little, MS; Christopher Moretti, MS; Amitabh Chaudhary, PhD; Douglas Thain, PhD

Manuscript Region of Origin: UNITED STATES

Abstract: Many-task computing aims to bridge the gap between two computing paradigms, high
throughput computing and high performance computing. Many-task computing denotes high-
performance computations comprising multiple distinct activities, coupled via file system operations.
The aggregate number of tasks, quantity of computing, and volumes of data may be extremely large.
Traditional techniques found in production systems in the scientific community to support many-task
computing do not scale to today's largest systems, due to issues in local resource manager scalability
and granularity, efficient utilization of the raw hardware, long wait queue times, and shared/parallel
file system contention and scalability. To address these limitations, we adopted a "top-down" approach
to building a middleware called Falkon, to support the most demanding many-task computing
applications at the largest scales. Falkon (Fast and Light-weight tasK executiON framework) integrates
(1) multi-level scheduling to enable dynamic resource provisioning and minimize wait queue times, (2)
a streamlined task dispatcher able to achieve orders-of-magnitude higher task dispatch rates than
conventional schedulers, and (3) data diffusion which performs data caching and uses a data-aware
scheduler to co-locate computational and storage resources. Micro-benchmarks have shown Falkon to
achieve over 15K+ tasks/sec throughputs, scale to hundreds of thousands of processors and to millions
of queued tasks, and execute billions of tasks per day. Data diffusion has also shown to improve
applications scalability and performance, with its ability to achieve hundreds of Gb/s I/0 rates on
modest sized clusters, with Tb/s /0 rates on the horizon. Falkon has shown orders of magnitude
improvements in performance and scalability than traditional approaches to resource management
across many diverse workloads and applications at scales of billions of tasks on hundreds of thousands
of processors across clusters, specialized systems, Grids, and supercomputers. Falkon's performance
and scalability have enabled a new class of applications called Many-Task Computing to operate at
previously so-believed impossible scales with high efficiency.
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many-task computing do not scale to today’s largest
systems, due to issues in local resource manager
scalability and granularity, efficient utilization of the
raw hardware, long wait queue times, and
shared/parallel file system contention and
scalability. To address these limitations, we adopted
a “top-down” approach to building a middleware
called Falkon, to support the most demanding many-
task computing applications at the largest scales.
Falkon (Fast and Light-weight tasK executiON
framework) integrates (1) multi-level scheduling to
enable dynamic resource provisioning and minimize
wait queue times, (2) a streamlined task dispatcher
able to achieve orders-of-magnitude higher task
dispatch rates than conventional schedulers, and (3)
data diffusion which performs data caching and uses
a data-aware scheduler to co-locate computational
and storage resources. Micro-benchmarks have
shown Falkon to achieve over 15K+ tasks/sec
throughputs, scale to hundreds of thousands of
processors and to millions of queued tasks, and
execute billions of tasks per day. Data diffusion has
also shown to improve applications scalability and
performance, with its ability to achieve hundreds of
Gb/s 1/O rates on modest sized clusters, with Tb/s
I/O rates on the horizon. Falkon has shown orders of
magnitude improvements in performance and
scalability than traditional approaches to resource
management across many diverse workloads and
applications at scales of billions of tasks on
hundreds of thousands of processors across clusters,
specialized systems, Grids, and supercomputers.
Falkon’s performance and scalability have enabled a
new class of applications called Many-Task
Computing to operate at previously so-believed
impossible scales with high efficiency.

1. Introduction

We want to enable the use of large-scale distributed
systems for task-parallel applications, which are
linked into useful workflows through the looser
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task-coupling model of passing data via filetroughput computing [13] can be classified as a
between dependent tasks. This potentially largeunbset of the category denoted by the yellow area.
class of task-parallel applications is precludemnfr Many-Task Computing [9] can be classified in the
leveraging the increasing power of modern parallehtegories denoted by the yellow and green areas.
systems such as supercomputers (e.g. IBM Bliikis paper focuses on techniques to enable the
Gene/L [1] and Blue Gene/P [2]) due to the lack support of many-task computing, including data-
efficient support in those systems for the “scrigti  intensive many-task computing.

programming model [3]. With advances in e-Scien8sters and Grids [14, 15] have been the preferred
and the growing complexity of scientific analyses)atform for loosely coupled applications that have
more scientists a}nd researchers rely on variogsen traditionally part of the high throughput
forms  of scripting to automate end-to-endomputing class of applications, which are managed
application processes involving task coordinatioBng executed through workflow systems or parallel
provenance tracking, and bookkeeping. The&§rogramming systems. Various properties of a new
approaches are typically based on a model of Igosginerging applications, such as large number oftask
coupled computation, in which data is exchanggfle  millions or more), relatively short per task
among tasks via files, databases or XML documensecution times (i.e. seconds to minutes long), and
or a combination of these. Vast increases in dafga intensive tasks (i.e. tens of MB of /O pelUCP
volume combined with the growing complexity okecond of compute) have led to the definition of a
data analysis procedures and algorithms haygy class of applications called Many-Task
rendered traditiona}l manual eprO(ation unfavorabtgomputing p]. MTC emphasizes on using larger
as compared with modern high performangg,mper of computing resources over short periods
computing processes automated by scientifig time to accomplish many computational tasks,
workflow systems. [4] where the primary metrics are in seconds (e.g.,
The problem space can be partitioned into four maih.OPS, tasks/sec, I0/sec), while HTC requires large
categories (see Figure 1). 1) At the low end of tleenounts of computing for long periods of time with
spectrum (low number of tasks and small input sizéhie primary metrics being operations per month.[13]
we have tightly coupled Message Passing Interfak C applications are composed of many tasks (both
(MPI) applications (white). 2) As the data sizéendependent and dependent) that can be individually
increases, we move into the analytics categonh sischeduled on many computing resources across
as data mining and analysis (blue); MapReduce [Blultiple administrative boundaries to achieve some
is an example for this category. 3) Keeping data silarger application goal.

modest, but increasing the number of tasks moves\§$c  denotes  high-performance  computations
into the loosely coupled applications involving ancomprising multiple distinct activities, coupledavi
tasks ~ (yellow); ~ SwiftFalkon [6, 7] ~andfile system operations. Tasks may be small or |arge
Pegasus/DAGMan [8] are examples of this catégopyiprocessor or multiprocessor, compute-intensive
4) Finally, the combination of both many tasks angt gata-intensive. The set of tasks may be static o
large datasets moves us into the data-intensigamic, homogeneous or heterogeneous, loosely
Many-Task Computing [9] category (green)equpled o tightly coupled. The aggregate number of
examples are Swift/Falkon and data diffusion [10§asks, quantity of computing, and volumes of data

Dryad [11], and Sawzall [12]. may be extremely large. The new term MTC draws
\ attention to the many computations that are
Input | w "

Dis Hi heterogeneous but not “happily” parallel.
Size Data Within the science domain, the data that need®to b
Analysis, Big Data and processed generally grows faster than computational
Mining Lanviats resources and their speed. The scientific community
Med is facing an imminent flood of data expected from

the next generation of experiments, simulations,
sensors and satellites. Scientists are now attagpti
calculations requiring orders of magnitude more
computing and communication than was possible
only a few years ago. Moreover, in many currently
> planned and future experiments, they are also
1 L M planning to generate several orders of magnitude
Number of Tasks more data than has been collected in the entire
human history [16]. Many applications in the
scientific computing generally use a shared
infrastructure such as TeraGrid [17] and Open
Science Grid [18], where data movement relies on
High-performance computing can be classified ishared or parallel file systems. The rate of inseea
the category denoted by the white area. Higim the number of processors per system is

Many Loosely Coupled Tasks

Low

Figure 1: Problem types with respect to data size
and number of tasks
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outgrowing the rate of performance increase ehortcomings in traditional resource management
parallel file systems, which requires rethinkingystems that support high-throughput and high-
existing data management techniqueperformance computing that are not efficient in
Unfortunately, this trend will continue, as advashcesupporting many-task computing. Falkon was
multi-core and many-core processors will increaskesigned to enable the rapid and efficient executio
the number of processor cores one to two ordersadfmany tasks on large scale systems, and integrate
magnitude over the next decade. [4] We believe thaivel data management capabilities to extend data
data locality is critical to the successful andoght intensive applications scalability beyond that of
use of large distributed systems for data-intensit@ditional parallel file systems.

applications [19, 20] in the face of a growing ga

bg'ltc\)/veen conEpute p]ower and storagegperforgr]ngn . Related Work

Large scale data management needs to be a primatyhigh throughput computing (HTC) is a subset of
objective for any MTC-enabled middleware, Q)¢ "jt is worth mentioning the various efforts in
ensure data movement is minimized by intelligeRhapling HTC on large scale systems. Some of these
data-aware scheduling. systems are Condor [29, 30], Portable Batch System
Over the past year and a half, Falkon [21, 7] h@BBS) [31], Load Sharing Facility (LSF) [32], SGE
seen wide deployment and usage across a variety3s, MapReduce [5], Hadoop [34], and BOINC
systems, from the TeraGrid [17], the SiCortex [22]35]. Full-featured local resource managers (LRMs)
the IBM Blue Gene/P [23], and the Sursuch as Condor, PBS, LSF, and SGE support client
Constellation [17]. Figure 2 shows plot of Falkospecification of resource requirements, data stagin
across these various systems from December 200grecess migration, check-pointing, accounting, and
April 2009. Each blue dot represents a 60 secoddemon fault recovery. Condor and glide-ins [36]
average of allocated processors, and the black lme the original tools to enable HTC, but their
denotes the number of completed tasks. In summasyaphasis on robustness and recoverability limits
there were 166,305 peak concurrent processors, Whbir efficiency for MTC applications in large-seal

2 million CPU hours consumed and 173 milliosystems. We found that relaxing some constraints
tasks for an average task execution time of §d.g. recoverability) from the middleware and
seconds and a standard deviation of 486 seconglscouraging the end applications to implement these
Many of the results presented here are represéntedonstraints has enabled significant improvements in
Figure 2, although some applications were run priptiddleware performance and efficiency at large
to the history log repository being instantiatedsite scale, between two to four orders of magnitude

2007. better performance.

1000000 CPU Hous 200M Allocated CPUs 200 Multi-level scheduling has been applied at the OS
- Aver Tk Evnc. 40406 s8¢ —DeNvered Tasksf| o5 level [37, 38] to provide faster scheduling for gpe
& 100000 = 1 160 of tasks for a specific user or purpose by emplpyin
3 140 2 an overlay that does lightweight scheduling within
g 10000 1 ] . . . .
3 1208  heavier-weight container of resources: e.g., ttgead
£ 1000 4 100 2 within a process or pre-allocated thread groupy Fre
g 80 Tg‘ and his colleagues pioneered the application of
g fs0 ©  resource provisioning to clusters via their work on
g 1040 HE [ 40 Condor “glide-ins” [36]. Requests to a batch
= ; ' 20 scheduler (submitted, for example, via Globus

1 0 GRAM) create Condor “startd” processes, which

then register with a Condor resource manager that
runs independently of the batch scheduler. Others
have also used this technique. For example, Mehta e
al. [39] embed a Condgrool in a batch-scheduled
cluster, while MyCluster [40] creates “personal
clusters” running Condor or SGE. Such “virtual
clusters” can be dedicated to a single workload;
This paper is a culmination of a collection of papethus, Singh et al. find, in a simulation study [44]

[7, 9, 10, 19, 24, 25, 21, 26, 27, 28] dating baxk reduction of about 50% in completion time.
2006, and includes a deeper analysis of previodewever, because they rely on heavyweight
results as well as some new results. This papmhedulers to dispatch work to the virtual clustee,
explores the issues in building the middleware {ser-task dispatch time remains high, and hence the
support the many-task computing paradigm on largeit queue times remain significantly higher than i
scale distributed systems. We have designed anhd ideal case due to the schedulers’ inabilifyush
implemented this middleware — Falkon — to enabilgork out faster.

the support of many-task computing on clusters,

grids and supercomputers. Falkon addresses

¥ W g PRI N Ky

Figure 2: December 2007 — April 2009 plot of
Falkon across various systems (ANL/UC TG 316
processor cluster, SiCortex 5832 processor machine,
IBM Blue Gene/P 4K and 160K processor machines,
and the Sun Constellation with 62K processors)
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The BOINC “volunteer computing” system [35, 42flistributed resources. Once the capability of light-
is known to scale well to large number of computgeight task dispatching and scalable data
resources, but lacks support for data intensimeanagement was available, new applications
applications due to the nature of the wide aremnerged that needed to run at ever increasing scales.
network deployment BOINC typically has, as welWe have achieved these improvements by narrowing
as lack of support for “black box” applicationsthe focus of the resource management by not
Although the performance of BOINC is significantlysupporting various expensive features, and by
better than traditional resource managers, it is stillaxing other constraints from the resource
one to two orders of magnitude slower than oumanagement framework effectively pushing them to
proposed solution, running at about 100 jobs/stte application or the clients.

compared to up to 3000 jobs/sec in our proposed
solution. PrOPO%8’ The Falkon Framework

On the IBM Blue Gene supercomputer, variouBo address the limitations of existing resource
works [43, 44] have leveraged the HTC-mode [4Fhanagement systems in supporting many-task
support in Cobalt [46] scheduling system. Thesmmputing, we adopted a “top-down” approach to
works have aimed at integrating their solution dsilding the middleware — Falkon — to support the
much as possible in Cobalt; however, it is not cleafost demanding many-task computing applications
that the current implementations will be able tat the largest scales. Falkon integrates (1) multi-level
support the largest MTC applications at the largestheduling to enable dynamic resource provisioning
scales, as their performance is still one to two ordefsd minimize wait queue times, (2) a streamlined
of magnitude slower than our proposed solutiotask dispatcher able to achieve order-of-magnitude
Furthermore, these works only focus on computggher task dispatch rates than conventional
resource management, and ignore data managemghiedulers, and (3) data diffusion which performs
altogether. data caching and uses a data-aware scheduler to co-

MapReduce (including Hadoop) is typically applietPcate computational and storage resources. This
to a data model Consisting of namel/value pa“@ictlon will describe each of these in detail.

processed at the programming language level. #s1 Architecture Overview

strengths are in its ability to spread the processingmfikon consists of a dispatcher, a provisioner, and
a large dataset to thousands of processors Widto or more executors. The dispatcher accepts tasks
m|n|m§1I expertise in distributed systems; hovyeverﬁtom clients and implements the dispatch policy.
often involves the development of custom filteringhe provisioner implements the resource acquisition
SC”P'ES_aﬂd d0?5 not support “bIach box" applicatigivlicy. Executors run tasks received from the
execution as is commonly found in MTC or HTCyispatcher. Components communicate via Web
applications. Services (WS) messages, except that notifications
Swift [6, 47, 48] and Falkon [7] have been used &re performed via a custom TCP-based protocol.
execute MTC applications on clusters, multi-sitthe notification mechanism is implemented over
Grids (e.g., Open Science Grid [18], TeraGrid [17]),CP because when we first implemented the core
specialized large machines (SiCortex [22]), arfealkon components using GT3.9.5, the Globus
supercomputers (e.g., Blue Gene/P [2]). SwiKoolkit did not support brokered WS noatifications.
enables scientific workflows through a data-flowStarting with GT4.0.5, there is support for brokered
based functional parallel programming model. It isreotifications.

parallel scripting tool for rapid and reliablerhe gispatcher implements the factory/instance
SpeCIflcat!On, eXeCuthn, and management of Iar%ttern, providing acreate instance Operation to
scale science and engineering workflows. Th@iow a clean separation among different clients. To
runtime system in Swift relies on the CoG Karajagccess the dispatcher, a client first requests creation
[49] workflow engine for efficient scheduling andyf 5 new instance, for which is returned a unique
load balancing, and it integrates with the Falkaghdpoint reference (EPR). The client then uses that
light-weight task execution dispatcher. In this papetpR to submit tasks, monitor progress (or wait for

we will focus on Falkon, the middleware we havgotifications), retrieve results, and (finally) destroy
designed and implemented to enable MTC on a wiggs instance.
range of systems from the average cIust.er o t,Q\eclient “submit” request takes an array of tasks
Iarggst supercomputers, and will also provide SO8&ch with working directory, command to execute,
details of the Swift system. . C '
o ] arguments, and environment variables. It returns an
In summary, our proposed work in light-weight taskray of outputs, each with the task that was run, its
dispatching and data management offers mapyturn code, and optional output strings (STDOUT
orders of magnitude better performance anghq STDERR contents). A shared notification
scalability than traditional resource managemeghgine among all the different queues is used to
techniques, and it is changing the types gotify executors that work is available for pick up.
applications that can efficiently execute on largenis engine maintains a queue, on which a pool of
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threads operate to send out notifications. The G$tbrage. Subsequent accesses to the same data results
container also has a pool of threads that handle \WiSexecutors fetching data from other peer executors
messages. Profiling shows that most dispatcher tiifiche data is already cached elsewhere. The current
is spent communicating (WS calls, notificationsjmplementation runs a GridFTP server [54] at each
Increasing the number of threads allows the serviegecutor, which allows other executors to read data
to scale effectively on newer multicore andtom its cache. This scheduling information are only
multiprocessor systems. hints, as remote cache state can change frequently

The dispatcher runs within a Globus Toolkit 4 (GT4nd is not guaranteed to be 100% in sync with the
[50] WS container, which provides authenticatio}lobal index. In the event that a data item is not
message integrity, and message encryptifind at any of the known cached locations, it
mechanisms, via transport-level, conversation-lev@ftempts to retrieve the item from persistent storage;
or message-level security [51]. if this also fails, the respective task fails. In Figure 3,
he black dotted lines represent the scheduler
ending the task to the compute nodes, along with

g.estrct)y}zng e.i(hec.uftors. t'lt IS b'n'tt'?lr'lzed ¢ ,E’y ¢ thbhe necessary information about where to find input
Ispatcher with information about e State 10 Bfata. The red thick solid lines represent the ability

mo.nltored and hoyv.to access it; the rule(s) un r each executor to get data from remote persistent
which the provisioner should create/destrog

tors: the locati fth i de b zg%)rage. The blue thin solid lines represent the
executors, the focation of the executor code, boun ility for each storage resource to obtain cached

on the number of executors to be created; bounds a from another peer executor. We assume data
the time for which executors should be created; a| lows the normal pattern fou.nd in_ scientific
the allowed idle time before executors are destroy% mputing, which is to write-once/read-many (the
The provisioner periodically monitors dispatcheg '

. o e assumption as HDFS makes in the Hadoop
state and determines whether to create addltlog@ tem [34]). Thus, we avoid complicated and
executors, and if so, how many, and for how lon y ‘

o ) X i h h hem her parallel
The provisioner supports both static and dyna & pensive cache coherence schemes other paralle

provisioning. Dynamic provisioning is supporte e systems enforce. . .

through GRAM4 [52]. Static provisioning isTo support plata-awarg schedpllng, we implement a
supported by directly interfacing with LRMs; Falkorfentralized index within the dispatcher that records
currently supports PBS, SGE and Cobalt. the location of every cached data object; this is

. . . imil h li NameN in H ’
A new executor registers with the dispatcher. Worlag":gr t[% Af] e.ﬁﬁg”?{:égg isa n?aig?:ine d EJ%ZZ%S

is then supplied as follows: the. dispatcher nmiﬁec%herent with the contents of the executor's caches
the executor when work is available; the execut A periodic update messages generated by the
requests work; the dispatcher returns the task(s); g—‘xeecutors. In addition, each executor maintains a

eﬁ(ecut.or executzs rt]he sqppllled tazk(sd) and r;tum@al index to record the location of its cached data
t e_eX|.t code an | the optional standard output/erg jects. We believe that this hybrid architecture
strings; and the dispatcher acknowledges del'very'provides a good balance between latency to the data
Communication costs can be reduced tagk and good scalability. In previous work [10, 24], we
bundling between client and dispatcher and/Gjtfered a deeper analysis in the difference between a
dispatcher and executors. In the latter case, problegagtralized index and a distributed one, and under
can arise if task sizes vary and one executor ggiRat conditions a distributed index is preferred.
assigned many large tasks, although that problem,,,, reskDispater N

can be addressed by having clients assign each tas DatarAware Scheduler L5
an estimated runtime. Another technique that can =

reduce message exchanges igi¢my-back new task atesg
dispatches when acknowledging result delivery. [7pwmani
Using both task bundling and piggy-backing, we caamsioning
reduce the average number of message exchang
per task to be close to zero, by increasing the bundl
size. In practice, we find that performance degrades
for bundle sizes of greater than 300 tasks.

Figure 3 shows the Falkon architecture, including

both the data management and data-aware schedggfire 3: Architecture overview of Falkon extended

components. Individual executors manage their ownyjth data diffusion (data management and data-
caches, using local eviction policies (e.&U [53]), aware scheduler)
and communicate changes in cache content to the

dispatcher. The scheduler sends tasks to comp{?‘\‘g implement four dispatch policies: first-available

The provisioner is responsible for creating an

Available Resources
(GRAM4)

i ; ; EA), max-cache-hit (MCH), max-compute-util
nodes, along with the necessary information ab i
where to find related input data. Initially, eactMCU). and good-cache-compute (GCC).

executor fetches needed data from remote persistent
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The FA policy ignores data location informationand the executor. We implemented a new
when selecting an executor for a task; it simplomponent called TCPCore to handle the TCP-based
chooses the first available executor, and provides #@mmunication protocol. TCPCore is a component
executor with no information concerning théo manage a pool of threads that lives in the same
location of data objects needed by the task. Thus, théM as the Falkon dispatcher, and uses in-memory
executor must fetch all data needed by a task fromtifications and shared objects for communication.
persistent storage on every access. This policyHsr performance reasons, we implemented persistent
used for all experiments that do not use dal&P sockets so connections can be reused across
diffusion. tasks.

The MCH policy uses information about dataTable 1: Feature comparison between the Java and
location to dispatch each task to the executor with C Executor implementations

the largest amount of data needed by that task. If
that executor is busy, task dispatch is delayed until
the executor becomes available. This strategy is
expected to reduce data movement operations
compared to first-cache-available and max-compute-
util, but may lead to load imbalances where

processor utilization will be sub optimal, if nodes

Description Java C
Robustness high Medium
GSlITransport, None
Security  [GSIConversatioff  could
GSIMessagelLevilupport SSL

WS-based TCP-baséd

Communication

frequently join and leave. Protocal

) Error Recovery yes Yes
The MCU policy leverages data location Lifetime
information, attempting to maximize resource | \anagement yes No
utilization even at the potential higher cost of data [~ concurrent
movement. It sends a task to an available executor, Tasks yes No
preferring executors with the most needed data[™ pysn/Pull PUSH
locally. Model notification basef PULL
The GCC policy is a hybrid MCH/MCU policy. The Firewall no yes
GCC policy sets a threshold on the minimum NAT / Private | ° in general
processor utilization to decide when to use MCH or Networks yes in certain yes
MCU. We define processor utilization to be the cases
number of processors with active tasks divided by | Persistent no - GT4.0 yes
the total number of processors allocated. MCU used| __Sockets yes - GT4.2
a threshold of 100%, as it tried to keep all allocated Medium~High High

processors utilized. We find that relaxing this | Performance |-, 25045} 1700~3200

threshold even slightly (e.g., 90%) works well in tasks/s
practice as it keeps processor utilization high and it | geaiapility  [High ~ 54K cpuksMedium ~
gives the scheduler flexibility to improve cache hit e 10K CPUs
rates significantly when compared to MCU alone. ] high
. . Portabilit medium needs
3.2 Distributing the Falkon Architecture orently ref:omp”e)
Significant engineering efforts were needed to get 'o77 Caching ves no

Falkon to work on systems such as the Blue Gene/P
efficiently at large scale. In order to improveistributed Falkon Architecture: The original

Falkon's performance and scalability, we developdtalkon architecture [7] use a single dispatcher
alternate implementation and distributed the Falkgrunning on one login node) to manage many
architecture. executors (running on compute nodes). The

Alternative I mplementations: Performance dependsarc.hitecture of the que Gene/P is hierarchical, in
critically on the behavior of our task dispatc¥/hich there are 10 login nodes, 640 1/O nodes, and
mechanisms. The initial Falkon implementation w#K compute nodes. This led us to the offloading of
100% Java, and made use of GT4 Java WS-Cordftg _dispatcher from one login node (quad-core
handle Web Services communications. [50] The2GHz PPC) to the many I/O nodes (quad-core
Java-only implementation works well in typicap-85GHZ PPC); I_:lgure 4 shows the distribution of
Linux clusters and Grids, but the lack of Java on ti§@mponents on different parts of the Blue Gene/P.
Blue Genell, Blue Gene/P, and SiCortex promptétkperiments show that a single dispatcher, when
us to re-implement some functionality in C. Table tunning on modern node with 4 to 8 cores at 2GHz+
has a summary of the differences between the tand 2GB+ of memory, can handle thousands of
implementations. tasks/sec and tens of thousands of executors.
In order to keep the implementation simple th&{OWever, as we ramped up our experiments to 160K
would work on these specialized systems, we use@'QC€SSOrS  (éach  executor ~running on one
simple TCP-based protocol (to replace the prior WBLOCessor), the centralized design began to show its
based protocol), internally between the dispatchi#pitations. One limitation (for scalability) was the
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fact that our implementation maintained persisteRtilkon has mechanisms to identify specific errors,
sockets to all executors (two sockets per executahd act upon them with specific actions. Most errors
With the current implementation, we had troublare generally passed back up to the application
scaling a single dispatcher to 160K executors (32Bwift) to deal with them, but other (known) errors

sockets). Another motivation for distributing thean be handled by Falkon directly by rescheduling
dispatcher was to reduce the load on login noddise tasks. Falkon can suspend offending nodes if too
The system administrators of the Blue Gene/P didany tasks fail in a short period of time. Swift

not approve of the high system utilization (botmaintains persistent state that allows it to restart a
memory and processors) of a login node fagrarallel application script from the point of failure,

extended periods of time when we were runnimg-executing only uncompleted tasks. There is no

intense workloads. need for explicit check-pointing as is the case with
/0 Nodes computeNodes] MP!1 applications; check-pointing occurs inherently
Linux ZeptOS with every task that completes and is communicated
back to Swift.
30 d 3.3 Monitoring
= ‘ trnemow | In-order to make visualizing the state of Falkon

~eme | easier, we have formatted various Falkon logs to be
printed in a specific format that can be read by the
GKrellm [55 monitoring GUI to display real time
state information. Figure 5 shows 1 million tasks

iy

0

i (sleep 60) executed on 160K processors on the IBM
alkon ocalized
Provisioner | rmemery Blue Gene/P supercomputer.

Systems =
Istus

e —————— ]

B

Global Parallel File System (GPFS)

s
Figure 5: Monitoring via GKrellm while running
1M tasks on 160K processors

Figure 4: 3-Tier Architecture Overview

Our change in architecture from a centralized one to
a distributed one allowed each dispatcher to manag
a disjoint set of 256 executors, without requiring a
inter-dispatcher communication. We did howev
had to implement additional client-side functionalit
to load balance task submission across ma
dispatchers, and to ensure that it did not overcom

tasks that could cause some dispatchers to

underutilized while others queued up tasks. Our n ,,l computations with real data, and not just “slegp
architecture allowed Falkon to scale to 160 tasks, due to the large overheads of.schedullng
lj((PbS through Condor2p] and other production local

processors while minimizing the load on the logi ) L
resource managers, running 1 million jobs, no matter

ners: . ) how short they are, will likely still take on the order
Reliability Issues at Large Scale: We discuss ¢ days.

reliability only briefly here, to explain how our

approach addresses this critical requirement. TR¢* Ease of Use .

Blue Gene/L has a mean-time-to-failure (MTBF) ofhe Swift parallel programming system already
10 days [1], which can pose challenges for |0n§upported a wide variety of resource managers, such
running applications. When running loosely coupled® GRAM, PBS, Condor, and others, through a
applications via Swift and Falkon, the failure of §&oncept called providers. Implementing a new
single node only affects the task(s) that were bei’i%#w'der specific for Falkon was a simple one day
executed by the failed node at the time of the failu@ffort, consuming 840 lines of code. This is
/O node failures only affect their respective psef@mparable to GRAM2 provider (850 lines),
(256 processors); these failures are identified §RAM4 provider (517 lines), and the Condor
heartbeat messages or communication failurg¥ovider (575 lines). For applications that are

erall, it took 453 seconds to complete 1M tasks,

an ideal time being 420 seconds, achieving
3% efficiency. To place this benchmark in context,
f what an achievement it is to be able to run 1
illion tasks in 7.5 minutes, others6 have
t’:maged to run 1 million jobs in 6 months. Grant it
t the 1 million jobs they referred to iB6] were
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already batch-scheduler aware, interfacing witiwvo different configurations: 1) 1 dispatcher up to
Falkon does not pose a significant challenge. The2l processors, and 2) N/256 dispatchers on up to
is also a wide array of command line clients ard=160K processors, with 1 dispatcher managing
scripts that can allow an application to interface wib6 processors. We varied the task lengths from 1
Falkon through loosely coupled scripts, rather tharsacond to 256 seconds (using sleep tasks with no
JAVA API using web services. I/0O), and ran weak scaling workloads ranging from
2K tasks to 1M tasks (7 tasks per core).

4. Performance Evaluation Figure 7 investigates the effects of efficiency of 1
We use micro-benchmarks to determindispatcher running on a faster login node (quad core
performance  characteristics and  potenti&l5GHz PPC) at relatively small scales. With 4
bottlenecks on systems with many cores. Thigcond tasks, we can get high efficiency (95%+)
section explores the dispatch performance, howaieross the board (up to the measured 2K processors).
compares with other traditional LRMs, efficiencyFigure 8 shows the efficiency with the distributed
and data diffusion effectiveness. dispatchers on the slower I/O nodes (quad core 850

; MHz PPC) at larger scales. It is interesting to notice
4.1 Falkon Task Dlspat(;h _Perf.orma_n.ce. tpat the same 4 second tasks that offered high
One key component to achieving high utilization o

; hieving hiah task di iciency in the single dispatcher configuration now
large-scale systems Is achieving high tas dlspag: ieves relatively poor efficiency, starting at 65%
and execution rates. In previous work [7] w !

. nd dropping to 7% at 160K processors. This is due
reported that FaII§0n .W'th a Java Execut.or and Wi both the extra costs associated with running the
based communication protocol achieves 4

tasks/sec in a Linux cluster (Argonne/Univ. o ispatcher on slower hardware, and the increasing

; . need for high throughputs at large scales. If we
%T;Zagg?, \t,g;hk 5\/5',[?1 (;’ELIJ/SO V{'/Cir?eegg?eéatsﬁeWisq(gnsider the 160K processor case, based on our
P ) X P P an&xperiments, we need tasks to be at least 64 seconds
throughput experiment on a variety of .SyStemgng to get 90%+ efficiency. Adding I/O to each
(Argonne/Univ. of Chicago L|nu>_< cluster, SICOrteXtask will further increase the minimum task length in
and Blue Gene/P) for both versions of the executg

(Java and C, WS-based and TCP-based respectivefg%er to achieve high efficiency.

at significantly larger scales (see Figure 6). We 100% ———
achieved 604 tasks/sec and 2534 tasks/sec for theow | 32 seconds \
Java and C Executors respectively (Linux cluster, 1 80% 17 77§ seconds N
dispatcher, 200 CPUs), 3186 tasks/sec (SiCortex, 1 7°% | =2 seconds

dispatcher, 5760 CPUs), 1758 tasks/sec (Blug ®*
Gene/P, 1 dispatcher, 4096 CPUs), and 3073 50:/"
tasks/sec (Blue Gene/P, 640 dispatchers, 1638213022;2
CPUs). Note that the SiCortex and Blue Gene/P only .,
support the C Executors. The throughput numbers 4,
that indicate “1 dispatcher” are tests done with the ¢/
original centralized dispatcher running on a login S R e P S
node. The last throughput of 3071 tasks/sec was NUmber of Processors

achieved with the dispatchers distributed over 64’—qure 7: Efficiency graph for the Blue Gene/P for 1

/O nodes, each managing 256 processors. to 2048 processors and task lengths from 1 to 32
seconds using a single dispatcher on a login node

o Vv ™ >
N &
& &g

5000

4500 100%

o i - =
[} "\
& 4000 90% \ ‘
2 -=- 256 seconds
o 3500 80% e 128 seconds
& 3000 \ == 64 seconds
= 70% 32 seconds
2 2500 = 60% —_— \ \ _9-6136 seconds
—*-8 seconds
S 2000 2 ° \ \ \ —-4 seconds
3 Q o -2
° 50% seconds
= 1500 2 \ \ \ 1 second
= 1000 o 40% \ \ \
500 30% \\ \ N
0 20%
ANL/UC, Java ANL/UC, C SiCortex, C  BlueGene/P, C BlueGene/P, C \\
200 CPUs 200 CPUs 5760 CPUs 4096 CPUs 163840 CPUs 10%
1 service 1 service 1 service 1service _ 640 services ‘\\:
Executor Implementation and Various Systems 0%

. . . 256 1024 4096 16384 65536 163840
Figure 6: Task dispatch and execution throughput Number of Processors

for trivial tasks with no I/O (sleep 0) Figure 8: Efficiency graph for the Blue Gene/P for
To better understand the performance achieved fo?26 to 160K processors and task lengths ranging

different workloads, we measured performance ad"@m 1 to 256 seconds using N dispatchers with each
function of task length. We made measurements in dispatcher running on a separate 1/O node
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To summarize: distributing the Falkon dispatchéfdyCluster [40]) and PBS (v2.1.8) performance in a

from a single (fast) login node to many (slow) I/Qinux environment (the same environment where we

nodes has both advantages and disadvantages. t€ee Falkon and achieved 2534 tasks/sec
advantage is that we achieve good scalability tbroughputs). The throughputs we measured for PBS
160K processors, but at the cost of significantiwas 0.45 tasks/sec and for Condor was 0.49
worse efficiency at small scales (less than 4t&sks/sec; other studies in the literature have
processors) and short tasks (1 to 8 seconds). Weasured Condor's performance as high as 22
believe both approaches are valid, depending on tasks/sec in a research prototype called Condor J2
application task execution distribution and scale {80].

the application. We also tested the performance of Cobalt (the Blue
The experiments presented in Figure 6, Figure 7, a@dne/P’'s LRM), which yielded a throughput of
Figure 8 were conducted using one million tasks p@i037 tasks/sec; recall that Cobalt also lacks the
run. We thought it would be worthwhile to conduct aupport for single processor tasks, unless HTC-mode
larger scale experiment, with one billion tasks, {d5] is used. HTC-mode means that the termination
validate that the Falkon service can reliably ruof a process does not release the allocated resource
under heavy stress for prolonged periods of timand initiates a node reboot, after which the launcher
Figure 9 depicts the endurance test running opeogram is used to launch the next application.
billion tasks (sleep 0) on 128 processors in a Lindbhere is still some management (which we
cluster, which took 19.2 hours to complete. We ramplemented as part of Falkon) that needs to happen
the distributed version of the Falkon dispatchen the compute nodes, as exit codes from previous
using four instances on an 8-core server usiagplication invocations need to be persisted across
bundling of 100, which allowed the aggregateeboots (e.g. to shared file system), sent back to the
throughput to be four times higher than that reportetient, and have the ability to launch an arbitrary
in Figure 6. Over the course of the experiment, tlaplication from the launcher program. Running
throughput decreased from 17K+ tasks/sec to justlkon on the BlueGene/L in conjunction with
over 15K+ tasks/sec, with an average throughput @bbalt's HTC-mode support yielded a 0.29 task/sec
15.6K tasks/sec. The loss in throughput is attributdtroughput. The low throughput was attributed to the
to a memory leak in the client, which was makinfact that nodes had to be rebooted across jobs, and
the free heap size smaller and smaller, and hemmele bootup was serialized in the Cobalt scheduler.
invoking the garbage collection more frequently. W&/e only investigated the performance of HTC-mode
estimated that 1.5 billion tasks would have beem the Blue Gene/L at small scales, as we realized
sufficient to exhaust the 1.5GB heap we hatat it will not be sufficient for MTC applications
allocated the client, and the client would have likeljue to the high overhead of node reboots across
failed at that point. Nevertheless, 1.5 billion tasks fasks; we did not pursue it at larger scales, or on the
larger than any application parameter space we h&lae Gene/P.

today, and is many orders of magnitude larger thaiype et al. [43] also explored a similar space as we
what other systems support. The following Sulyye, |everaging HTC-mode [45] support in Cobalt
section attempts to compare and contrast thg the Blue Gene/L. The authors had various
throughputs achieved between Falkon and Otr@fperiments, which we tried to replicate for
local resource managers. comparison reasons. The authors measured an
overhead of 46.4+21.2 seconds for running 60
second tasks on 1 pset of 64 processors on the Blue
Gene/L. In a similar experiment in running 64
second tasks on 1 pset of 256 processors on the Blue
Gene/P, we achieve an overhead of 1.2+2.8 seconds,
more than an order of magnitude better. Another
' 04 comparison is the task startup time, which they
03 measured to be on average about 25 seconds, but
02 sometimes as high as 45 seconds; the startup times
{94 for tasks in our system are 0.8+2.7 seconds. Another
T S s comparison is average task load time .by number of
Time (howrs) simultaneously submitted tasks on a single pset and
Figure 9: Endurance test with 1B tasks on 128 CPUs executable image size of 8MB. The authors reported
in ANL/UC cluster an average of 40~80 seconds for 32 simultaneous
. tasks on 32 compute nodes on the Blue Gene/L (1
4.2 Comparlng Falkon to Other LRMs pset, 64 CPUs). We measured our overheads of
and Solutions executing an 8MB binary to be 9.5+3.1 seconds on
It is instructive to compare with task execution rate compute nodes on the Blue Gene/P (1 pset, 256
achieved by other local resource managers. @iPUs).
previous work [7], we measured Condor (v6.7.2, via
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Throughput (tasks/sec) - 60 sec aver
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Finally, Peter's et al. from IBM also recentyWe see the throughput in terms of scheduling
published some performance numbers on the HT@ecisions per second range between 2981/sec (for
mode native support in Cobalt [44], which shows BA without 1/0) to as low as 1322/sec (for MCH).
similar one order of magnitude difference betweewote that for the FA policy, the cost of
HTC-mode on Blue Gene/L and our Falkon supparbmmunication is significantly larger than the rest of
for MTC workloads on the Blue Gene/P. Fothe costs combined, including scheduling. The
example, the authors reported a workload of 32Cheduling is quite inexpensive for this policy as it
tasks on 8K processors and 32 dispatchers tahmply load balances across all workers. However,
182.85 seconds to complete (an overhead of 5.58wms see that with the data-aware policies, the
per task), but the same workload on the sarseheduling costs (red and light blue areas) are
number of processors using Falkon completed significant.

30.31 seconds with 32 dispatchers (an overhead of = Task SUbmL —
0.92ms per task). Note that a similar workload of 51| -ES;‘E@‘;E%}EA L?Z'g\_é@'gbg“ﬁ‘zgdwsr) T 5000
1M tasks on 160K processors run by Falkon can be. NoRfication for Tack Recais o)

. . 4 WS Communication — 4000
completed in as little as 368 seconds (0.35ms pek = Throughput (tasks/sec)

a

pel

task overheads). N H 3000
4.3 Data Diffusion Performance s | ~ ! B R
We measured the performance of the data-awarg

scheduler on various workloads, both with static an@, :
dynamic resource provisioning, and ran experiments E.II:
on the ANL/UC TeraGrid [58] (up to 100 nodes, 200 ° i

=
o
=]
(=)

Throughput (tasks/sec)

o

. first- first- max- max-cache- good-
processors). The Falkon service ran on an 8-COre  aaiable ~available compute-util  hit  cache-
Xeon@2.33GHz, 2GB RAM, Java 1.5, 100Mb/s  WwithoutVO with /O compute

netvvprk, and 2 ms latency to the.(;xecutorls. Thﬁigure 10: Data-aware scheduler performance and
persistent storage was GPFS [59] with <1ms atency.qge profiling for the various scheduling policies

to executors.
; ; i 4.3.2 Monotonically Increasing Workload
We investigate three diverse  workloads; >4 :
g %Ne investigated the performance of the FA, MCH,

Monotonically-Increasing (MI) and All-Pairs (AP). - . .
We use the MI workload to explore the dynamiMCU' and GCC policies, while also analyzing cache

i i e ffects by varying node cache size (1GB to
resource provisioning support in data diffusion, a%e € .
the various scheduling policies and cache sizes. B). The MI workload has a high I/O to compute

. nafio (10MB:10ms). The dataset is 100GB large
he AP workl ff
:iﬁvte itorag\;,\(leo[rGO(iéd to compare data diffusion WI‘L?TOK x 10MB files). Each task reads one file chosen

at random (uniform distribution) from the dataset,
4.3.1 Data-Aware Scheduler Performance and computes for 10ms. The arrival rate is initially 1
In order to understand the performance of the dafgsk/sec and is increased by a factor of 1.3 every 60
aware scheduler, we developed several MiCl@sconds to a maximum of 1000 tasks/sec. The
benchmarks to test scheduler performance. We Uggfction varies arrival rate A from 1 to 1000 in 24
the FA policy that performed no I/O as the baseliRgstinct intervals makes up 250K tasks and spans
scheduler, and tested the various scheduling policigg, 5 seconds; we chose a maximum arrival rate of
We measured overall achieved throughput in termgog tasks/sec as that was within the limits of the
of scheduling decisions per second and th@ia aware scheduler, and offered large aggregate
breakdown of where time was spent inside &y requirements at modest scales. This workload
Fallkon service. We conducted our experimenfgyg 1o explore a varying arrival rate under a
using 32 nodes; our workload consisted of 250K stematic increase in task arrival rate, to explore

tasks, where each task accessed a random fiig gata-aware scheduler's ability to optimize data
(uniform distribution) from a dataset of 10K files Ofocality with an increasing demand.

1B in size each. We use files of 1 byte to meas E baseli . i h task
the scheduling time and cache hit rates with minim e baseline experiment ('.:A policy) ran each tas
impact from the actual I/O performance of persiste 1[rec_tly from GPFS, using dynamic resource
storage and local disk. We compare the FA poli ovisioning.  Aggregate throughput = matches

. . . emand for arrival rates up to 59 tasks/sec, but
;2“:;%, nol\l/{géslepeop:ig)/, an%ollcg/éjémgpgiz;& .1\.1'1% remains flat at an average of 4.4Gb/s beyond that.

scheduling window size was set to 100X the numb-gt]e workload execution time was 5011 seconds,

of nodes, or 3200. We also used 0.8 as the Cpgl@lding 28% efficiency (ideal being 1415 seconds).
utilization threshold in the GCC policy to determin¥Ve ran the same workload with data diffusion with
when to switch between the MCH and McClarying cache sizes per node (1GB to 4GB) using
policies. Figure 10 shows the scheduler performarig® GCC policy, optimizing cache hits while keeping
under different scheduling policies. processor utilization high (90%). The working set
was 100GB, and with a per-node cache size of 1GB,
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1.5GB, 2GB, and 4GB caches, we get aggregateche, the load on GPFS became as low as 0.4Gb/s;
cache sizes of 64GB, 96GB, 128GB, and 256GBimilarly, the network load was considerably lower,
The 1GB and 1.5GB caches cannot fit the workingith the highest values of 1.5Gb/s for the MCU
set in cache, while the 2GB and 4GB cache can. policy, and less than 1Gb/s for the other policies.

For the GCC policy with 1GB caches, throughput 20 g s8I
keeps up with demand better than the FA policy, up, 22 =
to 101 tasks/sec arrival rates (up from 59), at whictg 1, |
point the throughput reached an average of 5.2Gb/s; 12 -
Once the working set caching reaches a steady state,°

I

the throughput reaches 6.9Gb/s. The overall cachg 2 I BN B EEE B
hit rate was 31%, resulting in a 57% higher™ a{ | —ga B
throughput than GPFS. The workload execution 5

time is reduced to 3762 seconds (from 5011 deal FA GCC GCC GCC GCC MCH McU
seconds), with 38% efficiency. 1GB 15GB 2GB 4GB 4GB 4GB
Increasing the cache size to 2GB (128GB e Worker Caches (o)

aggregate), the aggregate throughput is close to the = GPFS Throughput (Gbis)

demand (up to the peak of 80Gb/s) for the entire Figure 11: Ml workload average and peak (99
experiment. We attribute this good performance to percentile) throughput

the ability to cache the entire working set and thel’he response time (see Figure 12) is probably one of

schedule tasks to the nodes that have required qﬂg most important metrics interactive applications.

to achieve cache hit rates approaching 98%. With krage Response Time (AR) is the end-to-end time

S)ée;%'on time of 1436 seconds, efficiency WaPom task submission to task completion notification

o for taski; AR; = WQ+TK;+D;, where WQ is the
Both the MCH and MCU policies performedyait queue time, TKis the task execution time, and

significantly worse than GCC, due to them being tqp, is the delivery time to deliver the result.

rigid and causing either unnecessary transfers over

the network, or leaving processors idle. Howeverg o0 | 1569
both MCH and MCU still managed to outperformé’
the baseline FA policy. £ 1400 1

. ) Q1200 - 1084
Figure 11 summarizes the aggregate /O throughpgt, |

measured in each of the experiments conducted. Ve
present in each case first, as the solid bars, tfe
average throughput achieved from start to finishg
partitioned among local cache, remote cache, arid *® |
GPFS, and second, as a black line, the “peak” % |
(actually 99' percentile) throughput achieved during 0

600 -

. . . . . FA GCC GCC GCC GCC MCH MCU
the execution. The second metric is interesting 1GB 15GB 2GB 4GB 4GB 4GB

because of the progressive increase in job

submission rate: it may be viewed as a measure ofFigure 12: Ml workload average response time
how far a particular method can go in keeping
with user demands.

YRe see a significant different between the best data
diffusion response time (3.1 seconds per task) to the
We see that the FA policy had the lowest averaggrst data diffusion (1084 seconds) and the worst
throughput of 4Gb/s, compared to between 5.3GIgPFS (1870 seconds). That is over 500X difference
and 13.9Gb/s for data diffusion (GCC, MCH, anfetween the data diffusion GCC policy and the FA
MCU with various cache sizes), and 14.1Gb/s fgolicy response time. A principal factor influencing
the ideal case. In addition to having higher averagee average response time is the time tasks spend in
throughputs, data diffusion also achievethe Falkon wait queue. In the worst (FA) case, the
significantly throughputs towards the end of thgueue length grew to over 200K tasks as the
experiment (the black bar) when the arrival rates agtocated resources could not keep up with the
highest, as high as 81Gb/s as opposed to 6Gb/sdmival rate. In contrast, the best (GCC with 4GB
the FA policy. caches) case only queued up 7K tasks at its peak.
Note also that GPFS file system load (the rethe ability to keep the wait queue short allowed data
portion of the bars) is significantly lower with datdaliffusion to keep average response times low (3.1
diffusion than for the GPFS-only experiments (FAgeconds), making it a better for interactive
in the worst case, with 1GB caches where theorkloads.

working set did not fit in cache, the load on GPFS is3.3 All-Pairs Workload Evaluation

still high with 3.6Gb/s due to all the cache misseg order to compare data diffusion with other related
while FA tests had 4Gb/s load. However, as thgork, we implemented a common workload called
cache sizes increased and the working set fit A)-Pairs (AP) [60]. This related work is part of the
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Chirp [61] project. We call the All-Pairs use ofase would not perform significantly better than the
Chirp active storage. Chirp has several 80% efficiency of data diffusion. Running the same
contributions, such as delivering an implementatiamorkload through Falkon directly against a parallel
that behaves like a file system and maintains mostfié system achieves only 26% of the ideal
the semantics of a shared filesystem, and offaéfsoughput.

efficient distribution of datasets via a spanning trg order to push data diffusion harder, we made the
making Chirp ideal in scenarios with a slow angorkjoad 10X more data-intensive by reducing the
high latency data source. However, Chirp does nQ§mpute time from 1 second to 0.1 seconds, yielding
address data-aware scheduling, so when used by Ally/5 1o compute ratio of 24MB:100ms. For this
Pairs, it typically distributes an entire applicatioqorkioad, the throughput steadily increased to about
working data set to each compute node local digkGp/s as more local cache hits occurred. We found
prior to the application running. This requiremendytremely few cache misses, which indicates the
hinders active storage from scaling as well as dq{@h data locality of the AP workload. Data
diffusion, making large working sets that do not fi§itfusion achieved 75% efficiency. Active storage
on each compute node local disk difficult to handlgng data diffusion transferred similar amounts of
and producing potentially unnecessary transfers @4t over the network (1536GB for active storage
data. Data diffusion only transfers the minimum daigq 1528GB for data diffusion with 0.1 sec compute
needed per job. time and 1698GB with the 1 sec compute time
Variations of the AP problem occur in manyvorkload) and to/from the parallel file system
applications. For example when we want t(12GB for active storage and 62GB and 34GB for
understand the behavior of a new function F on selata diffusion for the 0.1 sec and 1 sec compute time
A and B, or to learn the covariance of sets A andvBorkloads respectively). The similarities in
on a standard inner product F. [60] The AP problebandwidth usage manifested themselves in similar
is easy to express in terms of two nested for loopfficiencies, 75% for data diffusion and 91% for the
over some parameter space. This regular structbest case active storage.

also e_nables the optimization of its data accegs order to explore larger scale scenarios, we
operations. emulated (ran the entire Falkon stack on 200
Thain et al [60] conducted experiments witlprocessors with multiple executors per processor and
biometrics and data mining workloads using Chirgmulated the data transfers) an IBM Blue Gene/P.
The most data-intensive workload was where eatfe configured the Blue Gene/P with 4096
function executed for 1 second to compare twwocessors, 2GB caches per node, 1Gb/s network
12MB items, for an /O to compute ratio ofconnectivity, and a 64Gb/s parallel file system. We
24MB:1000ms. At the largest scale (50 nodes aatbo increased the problem size to 1000x1000 (1M
500x500 problem size), we measured an efficientasks), and set the 1/O to compute ratios to
of 60% for the active storage implementation, art#iMB:4sec (each processor on the Blue Gene/P is
3% for the demand paging (to be compared to thbout ¥ the speed of those in our 100 node cluster).
GPFS performance we cite). These experimer@m the emulated Blue Gene/P, we achieved an
were conducted in a campus wide heterogeneaffciency of 86%. The throughputs steadily
cluster with nodes at risk for suspension, netwoikcreased up to 180Gb/s (of a theoretical upper
connectivity of 100Mb/s between nodes, and kmound of 187Gb/s). It is possible that our emulation
shared file system rated at 100Mb/s from which tlveas optimistic due to a simplistic modeling of the
dataset needed to be transferred to the compuit®us network, however it shows that the scheduler
nodes. scales well to 4K processors and is able to do 870

Due to differences in our testing environments, heduling decisions per second to complete 1M
direct comparison is difficult, but we compute th&Sks in 1150 seconds. The best case active storage
best case for active storage as defined in [60], a¥iglded only 35% efficiency. We justify the lower
compare the data diffusion performance against tﬁﬁgluency .of the active storage due to the significant
best case. Our environment has 100 nodes (28€ that is spent to distribute the 24GB dataset to
processors) which are dedicated for the duration Hf nodes via the spanning tree. Active storage used
the allocation, with 1Gb/s network connectivityt2-3TB of network ~bandwidth (node-to-node
between nodes, and a parallel file system (GPFEMMunication) and 24GB of parallel file system
rated at 8Gb/s. For the 500x500 workload, dagndwidth, while data diffusion used 4.7TB of
diffusion achieves a throughput that is 80% of tHtetwork bandwidth, and 384GB of parallel file
best case of all data accesses occurring to local di¥Rtem bandwidth.

(see Figure 13). In reality, the best case active storage would require

We computed the best case for active storage tod§¢he sizes of at least 24GB to fit the 1000x1000
96%, however in practice, based on the efficiency Bfoblem size, while the existing 2GB cache sizes for
the 50 node case from previous work [60] whiciie Blue Gene/P would only be sufficient for an

achieved 60% efficiency, we believe the 100 nod@SX83 problem. This comparison is not only
emulated, but also hypothetical. Nevertheless, it is
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interesting to see the significant difference ito billions of tasks, and have a large variance of task
efficiency between data diffusion and active storagaecution times ranging from hundreds of
at this larger scale. milliseconds to hours. Furthermore, each task is
B Best Case (active storage) involved .in multiple read.s and writes to and from
100% B Falkon (data diffusion) files, which can range in size from kilobytes to
90% 1 B Best Case (paralel fie system)] - gigapvtes. These characteristics made traditional
] resource management techniques found in HTC
2 60% 1 inefficient; also, although some of these applications
2 000 | could be coded as HPC applications, due to the wide
£ 30% | variance of the arrival rate of tasks from many users,
20% 1 . ; X
an HPC implementation would also yield poor
utilization. Furthermore, the data intensive nature of
500x500 500x500 1000x1000 these applications can quickly saturate parallel file

10% 7
0% -

200 PUs 200CPUs 4096 CPUs systems at even modest computing scales.

Figure 13: AP workload efficiency for 500x500 ~ Many of the app.lications presented in this section
problem size on 200 processor cluster and were executed via the Swift parallel programming
1000x1000 problem size on the Blue Gene/P  system [6], which in turn used Falkon, although

supercomputer with 4096 processors some applications are coded directly against the

Falkon APIs. All these applications pose significant

¥hallenges to traditional resource management found

storage fundamentally boils down to a comparisgn HPC and HTC, from both job management and
of pushllng data Versus pulling data. The aCtI\é"tﬁorage management perspective, and are in critical
storage implementation pus.hes all th? needed d I2d of MTC enabled middleware. This section
for a workload to all nodes via a spanning tree. Wi scusses these applications in more details, and

data diffusion, nodes puI.I only the files immediatelgx lores their performance scalability across a wide
needed for a task, creating an incremental spannpaé)ge of systems, such as clusters, grids, and
forest (analogous to a spanning tree, but one t ﬁbercomputers ' ' '

supports cycles) at runtime that has links to both the i )
parent node and to any other arbitrary node @1 Functional — Magnetic =~ Resonance
persistent storage. We measured data diffusion ltaaging

perform comparably to active storage on our 208e note that for each volume, each individual task
processor cluster, but differences exist between thethe fMRI [62] workflow required just a few
two approaches. Data diffusion is more dependesg#conds on an ANL_TG cluster node, so it is quite
on having a well balanced persistent storage for timefficient to schedule each job over GRAM and
amount of computing power, but can scale to largéBS, since the overhead of GRAM job submission
number of nodes due to the more selective natureasid PBS resource allocation is large compared with
data distribution. Furthermore, data diffusion onlthe short execution time. In Figure 14 we show the
needs to fit the per task working set in local cachesecution time for different input data sizes for the
rather than an entire workload working set as is tRdRI workflow.

case for active storage. We submitted from UC_SUBMIT to ANL_TG and
5. Applications measured the turnaround time for the workflows. A
) 120-volume input (each volume consists of an image
We have found many real applications that arefile of around 200KB and a header file of a few
better fit for MTC than HTC or HPC. Theirhundred bytes) involves 480 computations for the
characteristics include having a large number fsfur stages, whereas the 480-volume input has 1960
small parallel jobs, a common pattern in margomputation tasks. The GRAM+PBS submission
scientific applications [6]. They also use file®lad low throughput although it could have
(instead of messages, as in MPI) for intra-procesgmtentially used all the available nodes on the site
communication, which tends to make thes@2 nodes to be exact, as we only used the 1A64
applications data intensive. nodes). We can however bundle small jobs together
4ising the clustering mechanism in Swift, and we
w the execution time was reduced by up to 4
s (jobs were bundled into roughly 8 groups, as
grouping of jobs was a dynamic process) with
RAM and clustering, as the overhead was

Our comparison between data diffusion and acti

We have identified various loosely couple
applications from many domains as potential goéﬂi‘o
candidates that have these characteristics to sHW®
examples of many-task computing applications!€
These applications cover a wide range of domai

from astronomy, physics, astrophysics?rhoni?ed by the bundled jobs. The Falkon
pharmaceuticals, bioinformatics, biometricEXecution service (with 8 worker nodes) however

rther cuts down the execution time by 40-70%, as
ch job was dispatched efficiently to the workers.
e carefully chose the bundle size for the clustering

neuroscience, medical imaging, chemistry, cIimafH
modeling, economics, and data analytics. They oftf
involve many tasks, ranging from tens of thousan
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so that the clustered jobs only required 8 nodes geconds consumed 866.33 CPU hours and wasted
execute. This choice allowed us to compa@®09 CPU hours (99.98971% efficiency); if we
GRAM/Clustering against Falkon, which used 8&cclude the last 43 seconds as the experiment was
nodes, fairly. We also experimented with differenwinding down, the workflow consumed 867.1 CPU
bundle sizes for the 120-volume run, but the over&lburs and it wasted 1.78 CPU hours, with a final
variations for groups of 4, 6 and 10 were ndfficiency of 99.7949013%. The experiment
significant (within 10% of the total execution timecompleted in 15091 seconds on a maximum of 216
for the 8 groups). processors, which results in a speedup of 206.9; note
the average number of processors for the entire

I — experiment was 207.26 CPUs, so the speedup of
5000 1 B GRAM/Clustering 4508 206.9 reflects the 99.79% computed efficiency.
4000 C Falkon 2609 0 1800 3600 5400 7200 9000 10800 12600 14400
=z qzi 8 ‘ | ‘ ‘ ‘ 20000
£ 3000 2510 200 4L
£ > 17500
2000 e 000
1
1239 o5 992 1123 150 1 °
1000
= 327 F £ 151 12500 .
0+ T T T % 100 4 10000 8
120 240 360 480 4
Input Data Size (Volumes) 754 7500
. - - 50 14 mnum_all_workers 5000
Figure 14 Execution Time for the fMRI Workflow num_busy_workers
25 7] — waitQ_length 2500
5.2 MolDyn (Chemistry Domain) 0 e 0
. . 0 1800 3600 5400 7200 9000 10800 12600 14400
The goal of this molecular dynamics (MolDyn) Time (see)

application is to optimize and automate the pjq,re 15: 244 Molecule MolDyn application;
computational workflow that can be used to generatesmmary view showing executor’s utilization in

the necessary parameters and other input files for yejation to the Falkon wait queue length as
calculating the solvation free energy of ligands, and experiment time progressed

can also be extended to protein-ligand binding. ) )
energy. Solvation free energy is an importaf 'S Worth comparing the performance we obtained

quantity in Computational Chemistry with a variet%)r MolDyn using Falkon with that of MolDyn over
of applications, especially in drug discovery an gdltlonal GRAM/PBS. Due to re!lqblllty issues
design. The accurate prediction of solvation frédith GRAM and PBS) when submitting 20K jobs
energies of small molecules in water is still a largefe" the course of hours, we were not able to
unsolved problem, which is mainly due to thauccessfullyfinish the same_244 molecule run over
complex nature of the water-solute interactions. [ARAM/PBS. We therefore tried to do some smaller
the study, a library of 244 neutral ligands is chosé&XPeriments, in the hopes that it would increase the
for free energy perturbation calculations. Thigrobability of doing a successful run. We tried
library contains compounds with various chemicg€veral runs with 50 molecules (4201 of jobs for the
functional groups. Also, the absolute free energies ¥ Molecule run, instead of 20497 jobs for the 244
solvation for these compounds are knowsolecule rur]); the best execution times we were
experimentally, and will serve as a tool t@ble to achieve for the 50 molecule runs with
benchmark our calculations. All the structures wef@RAM/PBS (on the same testbed) took 25292

obtained from the NIST Chemistry WebBool€conds. We achieved a speedup of only 25.3X
database [63]. compared to 206.9X when using Falkon on the same

. workflow and the same Grid site in a similar state.
Our experiment performed a 244 molecule run,

which is composed of 20497 jobs that should tawe, explgin this drastic difference mostly due to the
less than 957.3 CPU hours to complete; in practid¥Pical job duration (~200 seconds) and the.
it takes even less as some job executions are sha&fd@mission rate throttling of 1/5 jobs per second;
between molecules. Figure 15 shows the resouM!8n 200 second jobs, the most concurrent jobs we
utilization in relation to Falkon queue length as tHePUld expect was 40. Increasing the submission rate
experiment progressed. We see that as resourcgttle resulted in GRAM/PBS gateway instability,
were acquired (using the dynamic resourd® €VEN causing it to stop functioning. Furthermore,
provisioning, starting with 0 CPUs and ending witR&ch node was only using a single processor of the
216 CPUs at the peak), the CPU utilization was nelal processors avallablle on the compute nod.es due
perfect (green means utilized, red mean idle) witR the local site PBS policy thgt allocates each job an
the exception of the end of the experiment as the 1§5{iré (dual processor) machine and do_efs not allow
few jobs completed (the last 43 seconds). Figure §&1€r jobs to run on allocated machines; it is left up

shows the same information on a per task basis. tR¢n€ application to fully utilize the entire machine,

entire experiment with the exception of the last 4§rough multi-threading, or by invoking several

different jobs to run in parallel on the same machine.



O©CO~NOOOTA~AWNPE

Cluster Computing (2009)

This is a great example of the benefits of having tieaching of the multi-megabyte application binaries,
flexibility to set queue policies per applicationand the caching of 35MB of static input data that
which is impractical to do in real-world deployedvould have otherwise been read from the shared file
systems. system for each job. Note that each job still had

5.3 Molecular Dynamics: DOCK some minimal read and write operations to the

The DOCK (molecular dynamics) application [64Ehared file system, but they were on the order.of 10s
deals with virtual screening of core metabolic targe { KB (only at the start and end of computations),
against KEGG [65] compounds and drugs. DOC ith the majority of the computations being in the
addresses the problem of “docking” molecules 00s of seconds, with an average of 713 seconds.
each other. In general, “docking” is the 1000000 = Processors 450
identification of the low-energy binding modes of a  soo000 — Tasks Completed — 400
small molecule, or ligand, within the active site of a  sooo0o —— Throushouesissee)|
macromolecule, or receptor, whose structure isg 7ooo00 s
known. A compound that interacts strongly with & § sooooo -
receptor (such as a protein molecule) associated wigj 500000 -HHHTHIN.
a disease may inhibit its function and thus act as g 4o N
i |

w
a
=]

w
<]
S]

N
a
=]

N
o
S]

Throughput (tasks/sec)

beneficial drug. Development of antibiotic and- 5 sooo »‘MM“ i 17
1 l\m J‘M! W 4 100

anticancer drugs is a process fraught with dead ends. 20000 {
Each dead end costs potentially millions of dollars, 10000
wasted years and lives. Computational screening of o=
protein drug targets helps researchers prioritize PSS S
targets and determine leads for drug candidates. ) Time (sec)

. . . ... Figure 16: 934,803 DOCKS runs on 118,784 CPU
The goal of this project was to 1) validate our ability cores on Blue Gene/P
to approximate the binding mechanism of the
protein’s natural ligand (a.k.a compound that binds)hese computations are, however, just the beginning
2) determine key interaction pairings of chemicalf a much larger computational pipeline that will
functional groups from different compounds witi$creen millions of compounds and tens of thousands
the protein’s amino acid residues, 3) study tt@f proteins. The downstream stages use even more
correlation between a natural ligand that is similar g@mputationally  intensive and  sophisticated
other compounds and its binding affinity with th@rograms that provide for more accurate binding
protein’s binding pocket, and 4) prioritize theffinities by allowing for the protein residues to be
proteins for further study. flexible and the water molecules to be explicitly
934,80 odeled. Computational screening, which is

Running a workload consisting of latively | ; i | th t lab
molecules on 116K CPU cores using Falkon todk'UVEY INEXpensive, cannot replace the wet a
says, but can significantly reduce the number of

2.01 hours (see Figure 16). The per-task execulti X - o .
time was quite varied with a minimum of 1 secon ead ends by providing more qualified protein

a maximum of 5030 seconds, and a mean té(gets and leads. To grasp the magnitude of this

7134560 seconds. The two-hour run has a sustaifplication, the largest run we made of o934,803
utilization of 99.6% (first 5700 seconds of2SkS we performed represents only 0.09% of the

experiment) and an overall utilization of 78% (dugegrch space (1 billion .runs).being considered py the
to the tail end of the experiment). Note that we hsgientists we are working with; simple calculations

allocated 128K CPUs, but only 116K CPU;;:’)roject a search over the entire parameter space to

: full ilable for thged 20,938 CPU years, the equivalent of 48 days
registered successfully and were available for t & the 160K-core Blue Gene/P. This is a large

application run; this was due to GPFS contention M

bootstrapping Falkon on 32 racks, and was fixed fpoblem t?at_ cann(.)th be solved in a reasonat;le
later large runs by moving the Falkon framework @mount of time without a supercomputer scale
source. Our loosely coupled approach holds great

RAM before starting, and by pre-creating logfS%! X .
g y P g omise for making this problem tractable and

directories on GPFS to avoid lock contention. :
have made dozens on runs at 32 and 40 rack scdlddnageable on today’s largest supercomputers.

and we have not encountered this specific probléo4 Production Runs in Drug Design
since. We have been working extensively with a group of
Despite the loosely coupled nature of thigesearchers at the Midwest Center for Structural

application, our preliminary results show that thgenomics at Argonne National Laboratory, who
DOCK application performs and scales well thave adopted Falkon and use it in their daily
nearly full scale (116K of 160K CPUSs). TheProduction runs in modeling three-dimensional
excellent scalability (99.7% efficiency wherProtein structures towards drug design. Since
compared to the same workload at 64K CPUs) waEoteins with similar structures tend to behave in
achieved only after careful consideration was takéinilar ways, the team compares the modeled
to avoid the shared file system, which included the
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structures to known proteins in order to predieirth Gene/P CPU time. Using the power of the Blue
functions — a computationally intensive task. Gene/P we can perform detailed multi-variable

As the Protein Data Bank expands exponentially, igrameter studies of the behavior of all aspects of
becomes more difficult to coax desktop machines R§troleum refining covered by MARS.

do the types of analysis required. They turned &s a larger and more complex test, we performed a
Falkon as a way to utilize their existing softwar@D parameter sweep to explore the sensitivity ef th
applications on increasingly large machines, suchiavestment required to maintain production capacity
the IBM Blue Gene/P supercomputer with 160Kkver a 4-decade span on variations in the diesel
processors. “Falkon has allowed us to ask biggaoduction yields from low sulfur light crude and
questions and perform experiments on a scale neredium sulfur heavy crude oils. This mimics one
before attempted — or even thought possible,” sgidssible segment of the many complex multivariate
Andrew Binkowski, one of the main researchegarameter studies that become possible with ample
involved in performing the productions runs. “Thisomputing power. A single MARS model execution
is the difference between comparing a newlnvolves an application binary of 0.5MB, staticitip
determined protein structure to a family of relatedata of 15KB, 2 floating point input variables aad
proteins versus comparing it to the entire protegingle floating point output variable. The average
universe.” The team has done all of this usingicro-task execution time is 0.454 seconds. Toescal
existing software packages that were not designibis efficiently, we performed task-batching of 600
for high-throughput computing or many-tasknodel runs into a single task, yielding a workload
computing, and used Falkon to coordinate and driwgth 4KB of input and 4KB of output data, and an
the execution of many loosely-coupled computatiomserage execution time of 271 seconds.

that are treated as “black boxes” without anye executed a workload with 600 million model
application-specific code modifications. runs (1M tasks) on 128K processors on the Blue
Over the course of 7 months (09/08 — 04/09), thi@ene/P (see Figure 17). The experiment consumed
group managed to run 2 million production job8.3 CPU years and took 2483 seconds to complete.
consuming 170K CPU hours with a minimum oEven at this large scale, the per task executiadi
256 concurrent processors, an average of 81®2re quite deterministic with an average of 280+10
processors, and a maximum of 51200 concurresgconds; this means that most processors would star
processors; the average per job execution time veasl stop executing tasks at about the same time,
310 seconds, with a standard deviation of 33#hich produces the peaks in task completion rates
seconds. (blue line) that are as high as 4000 tasks/seca As

5.5 Economic Modeling: MARS comparison, a 1 processor experiment using a small

We also evaluated MARS (Macro Analysis o art of the samg yvorkload had an average of
Refinery Systems), an economic modelin 7110.3 seconds; this yielded an efficiency of 97.%
application for petroleum refining developed by DVt @ Speedup of 126,892 (ideal speedup being
Hanson and J. Laitner at Argonne [66]. Thi%30’816)'

modeling code performs a fast but broad-basec = e 5 5000
simulation of the economic and environmente! e isec) /_/ 4500
parameters of petroleum refining, covering over 2

primary & secondary refinery processes. MARE,
analyzes the processing stages for six grades &
crude oil (from low-sulfur light to high-sulfur ver  §
heavy and synthetic crude), as well as processes && 4000
upgrading heavy oils and oil sands. It includesieig
major refinery products including gasoline, diesei 2%
and jet fuel, and evaluates ranges of product shar:
It models the economic and environmental impa
of the consumption of natural gas, the productic Time (sec)

and use of hydrogen, and coal-to-liquids co-Figure 17: MARS application (summary view) on
production, and seeks to provide insights into howthe Blue Gene/P; 1M tasks using 128K processor
refineries can become more efficient through the cores

capture of waste energy. L
While MARS analyzes this large number o%\?altgi%er;scale Astronomy - Application

800000

600000

Number of Pro&éssol

0

processes and variables, it does so at a coarsk |
without involving intensive numerics. It consists 0"~ X e .
about 16K lines of C code, and can process m ich .performs the “stacking” of mage cutouts
internal model execution iterations, with a randkom different parts of the sky. This function can

from 0.5 seconds (1 internal iteration) to hou elp to statistically de_tect objects_ too faint
(many thousands of internal iterations) of Blu8thervwse. Astronomical image collections usually

e have implemented the AstroPortal [67, 68]
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cover an area of sky several times (in differefthe following experiment (Figure 18) offers a
wavebands, different times, etc). On the other hantbtailed view of the performance (time per stack per
there are large differences in the sensitivities pfocessor) of the stacking application as we vary the
different observations: objects detected in one baldality. The last data point in each case represents
are often too faint to be seen in another survey. itfeal performance when running on a single node.
such cases we still would like to see whether thelete that although the GPFS results show
objects can be detected, even in a statistical fashionprovements as locality increases, the results are
There has been a growing interest to re-project edah from ideal. However, we see data diffusion gets
image to a common set of pixel planes, then stackiclgse to the ideal as locality increases beyond 10.

images. The stacking improves the signal to noise,2000 Data Diffusion (GZ)
and after coadding a large number of images, there1 _—;—gggSD(iguzs)iﬂﬂ (FIT)
will be a detectable signal to measure the average - e — —=—GPFS (FIT)
brightness/shape etc of these objects. While this hégsiizg —

been done for years manually for a small number df h\

pointing fields, performing this task on wide areas of EZZ Y

sky in a systematic way has not yet been done. It 500
also expected that the detection of much faintef s00 T
sources (e.g., unusual objects such as transients) Gan N

be obtained from stacked images than can be :00 - — .
detected in any individual image. o :

0 T T T T T T T T T T
Astronomical surveys produce terabytes of data, and 1 13 2 3 4 5 10 20 30 Ideal
contain millions of objects. For example, the SDSS Locality
DR5 dataset has 320M objects in 9TB of imageBigure 18: Performance of the stacking application
[69]. To construct realistic workloads, we identified using 128 CPUs for workloads with data locality
the interesting objects (for a quasar search) frdi@nging from 1to 30, using data diffusion and GPFS

SDSS DR5. The working set we constructedging data diffusion, we achieve an aggregated I/O
consisted of 771,725 objects in 558,500 files, Wheﬂ‘f'roughput of 39Gb/s with high data locality, a
each file was either 2MB compressed or 6MBignificantly higher rate than with GPFS, which tops
uncompressed, resulting in a total of 1.1TB; at 4Gb/s. These results show the decreased load
compressed and 3.35TB uncompressed. From t§i$ shared infrastructure (.e., GPFS), which

working set, various workloads were defined, witljimately gives data diffusion better scalability.
certain data locality characteristics, varying from the

lowest locality of 1 (i.e., 1-1 mapping betweer-/ Montage (Astronomy Domain) o
objects and files) to the highest locality of 30 (i.efhe Montage [70] workflow demonstrated similar
each file contained an average of 30 objects). JOE exeClljtlog time p;lattern as there Wﬁre many small
jobs involved. We show in Figure 19 the comparison
$2reaG?i?jtrzFi;grta\l/vit\fl1vaﬁp tfstefzgogrcjgsssﬁ‘rgugh f the workflow execution time using Swift with

. . . stering over GRAM, Swift over Falkon, and MPI.
experiments  investigate the performqnce a'WL]Je Montage application code we used for
scalability of the stacking code in four

clustering and Falkon are the same. The code for the

Diffusion (FIT), 3) GPFS (GZ), and 4) GPFS (FITaMPI runs is derived from the same set of source

- . tqde, with the addition of data partitioning and inter-
T et e Dcessor comminicalon, S0 when e
data diffusion we use the MCU policy and cach &ocessors are allocated, each would process part of

X e input datasets, and combine the outputs if
data on local no_des. For the GPFS experiments eecessary. The MPI execution was well balanced
use the FA policy and perform no caching. G

SO . S cross multiple processors, as the processing for
mdycates thaf[ thg image data is in cpmpressed f‘”?@% h image was similar and the image sizes did not
while FIT indicates that the image data I§ary much. All three approaches needed to go over
uncompressed. PBS to request for computation nodes, we used 16
Data diffusion can make its largest impact on largabdes for Falkon and MPI, and also configured the
scale deployments, and hence we ran a seriescistering for GRAM to be around 16 groups.

experiments to capture the performance at a Iar. e workflow had twelve stages, and we only show

\S/\(l::lﬁ“%ig giggiiséoéz)t;zx;evggégﬁ|3?§aaﬁﬁflk ¢ parallel stages and the total execution time in the
9 Y #Gure (the serial stages ran on a single node, and the

exploit the data locality found in the varioug e e of running them across the three

gﬁwﬁiﬁsngggégs daa?t::t\)//vg; igiﬁ;gasﬁetgoﬁzr;ﬁ’#;f% roaches was small, so we only included them in
) total time for comparison purposes). The

data-aware scheduler can get within 90% of the id%@ rkflow produced a 3x3 square degree mosaic
cache hit ratios in all cases. around galaxy M16, where there were about 440
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input images (2MB each), and 2,200 overlappingsing brutal-force resources. It provides a simple
between them. There were tw#\dd stages becauseprogramming model and powerful runtime system
we divided the region into subsets, co-added imagdes processing large datasets. The model is based on
in each subset, and then co-added the subdets key functions: “map” and “reduce”, and the
together into a final mosaic. We can observe that thentime system automatically partitions input data
Falkon execution service performed close to tted schedules the execution of programs in a large
MPI execution, which indicated that jobs wereluster of commodity machines. MapReduce has
dispatched efficiently to the 16 workers. The GRANMeen applied to document processing problems (e.g.
execution with clustering enabled still did notistributed indexing, sorting, clustering).

perform as well as the other two, mainly due to PB&yplications that can be implemented in
queuing overhead. It is worth noting that the lagiapreduce are a subset of those that can be
stagemAdd was parallelized in the MPI version, bufmplemented in Swift due to the more generic
not for the version for GRAM or Falkon, and hencﬁrogramming model found in Swift. Contrasting
the big difference in execution time between Falka§\yit and Hadoop are interesting as it could
and MPI, and the source of the major difference ghtentially attract new users and applications to
the entire run between MPI and Falkon. systems which traditionally were not considered.

Katz et al. .[71] have also created a task-gragie compared two benchmarks, Sort and
implementation of the Montage code, using PegasygerdCount, and tested them at different scales and
They did not implement quite the same applicatiqith different datasets. [72] The testbed consisted of
as us: for example, they ran mOverlap and mimg®l 270 processor cluster (TeraPort at UChicago).
on the portal rather than on compute nodes, and theyjoop (the MapReduce implementation from
omitted the final mAdd phase. Thus directyanool) was configured to use Hadoop Distributed
comparison with Swift over Falkon is difficult. gjje System (HDFS), while Swift used Global
However, if we omit the finainAdd phase from the parallel File System (GPFS). We found Swift
comparison, Swift over Falkon is then about 5%ffered comparable performance with Hadoop, a
faster than MPI, and thus also faster than tW@prising finding due to the choice of benchmarks
Pegasus approach, as they claimed that MRhich favored the MapReduce model. In Sorting
execution time was the lower bound for them. Th@er a range of small to large files, Swift execution
reasons that Swift over Falkon performs better agghes were on average 38% higher when compared
that MPI incurs initialization and aggregatioR, Hadoop. However, for WordCount, Swift

processes, ~ which  involve  multi-processQgxecution times were on average 75% lower.
communications, for each of the parallel stag?%

: : r experience with Swift and Hadoop indicate that
where Falkon acquires resource at one time and t b file systems (GPFS and Hadoop) are the main

the communications in dispatching tasks from tl‘[fg)ttlenecks as applications scale: HDFS is more
Falkon service to workers have been kept minimu alable than GPFS, but it still has problems with

(only 2 message exchanges for each job dlspatcsh iall files, and it requires applications be modified.

The Pegasus approach used Condor's glide: ; .
mechanism, where Condor is still a heavy-weig e:etareosg:rﬁztcsrf (zjritssklg '?Z:EZ? t%zgag:?arsg(vjmﬁtlz
scheduler compared with Falkon. operate X i

systems and to cache data across jobs, which would

3500 in turn offers comparable scalability and
3000 || & GRAM(Clustering performance to HDFS without the added
2500 || Paton requirements of modifying applications.

2000

6. Future Work and Conclusions

Time (s

1500
1000 Clusters with 62K processor cores (e.g., TACC Sun
500 [ Constellation System, Ranger), Grids (e.g., TeraGrid
OMM with over a dozen sites and 161K processors), and
N & supercomputers with 160K processors (e.g., IBM
Blue Gene/P) are now available to the scientific
community. These large HPC systems are
considered efficient at executing tightly coupled
Figure 19: Execution Time for the Montage parallel jobs within a particular machine using MPI
Workflow to achieve inter-process communication. We

e proposed using HPC systems for loosely-coupled
>.8 Data Analytics: Sort and WordCount applications, which involve the execution of

lt\)/lar;lyiﬁgn%ramrgl?g rgo?relst ar\;\(lj fr?;n evr\r/g::; 2‘2’§ ependent, sequential jobs that can be individually
ee oduced to apstract away the 9 cheduled, and wusing files for inter-process

details of running applications in distribute -
environments. MapReduce [5] is regarded as cgmmumca’uon.
power-leveler that solves computation problems

Components
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We believe that there is more to HPC than tightgcales continue to increase according to Moore's
coupled MPI, and more to HTC than embarrassindlaw.

parallel long running jobs. Like HPC applicationsy, future work, we will develop both the theoretical
and science itself, applications are becoming,y practical aspects of building efficient and
increasingly complex opening new doors for manytajable support for both compute-intensive and
opportunities to apply HPC in new ways if Weata-intensive MTC. To achieve this, we envision
broaden our perspective. We hope this paper leaygfiging a new distributed data-aware execution
the broader community with a stronger appreciati@gpric that scales to at least millions of processors
of the fact that applications that are not tightlyq petabytes of storage, and will support HPC,
coupled MPI are not necessarily embarrassinglyrc, and HTC workloads concurrently and
parallel. Some have just so many simple tasks ”&ﬁﬁciently. Clients will be able to submit
managing them is hard. Applications that operate @gmputational jobs into the execution fabric by
or produce large amounts of data need sophisticag%mming to any compute node (as opposed to
data management in order to scale. There exXgfhmitting to single point of failure gateway nodes),
applications that involve many tasks, each composg@ fapric will guarantee that jobs will execute at
of tightly coupled MPI tasks. Loosely coupleqeast once, and that it will optimize the data
applications often have dependencies among task@yvement in order to maximize processor utilization
and typically use files for inter-procesgng minimize data transfer costs. The execution
communication. Efnc[en.t support for these sorts @fpric will be elastic in which nodes will be able to
applications on existing large scale SYSttM@jin and leave dynamically, and data will be
including future ones (e.g. Blue Gene/Q [73] angiomatically replicated throughout the distributed
Blue Water supercomputers) involves substanti@lstem for both redundancy and performance. We
technical challenges and will have big impact agjj| employ a variety of semantic for the data access
science. patterns, from full POSIX compliance for generality,
This paper has shown good support for MTC onta relaxed semantics (e.g. eventual consistency on
variety of resources from clusters, grids, armdhta modifications, write-once read-many data
supercomputers through the use of Swift and Falka@tcess patterns) to avoid consistency issues and
Furthermore, we have taken the first steps to addressease scalability. Achieving this level of
data-intensive MTC by offloading much of the I/Gscalability and transparency will allow the data-
away from parallel file systems and into thaware execution fabric to revolutionize the types of
network, making full utilization of caches (both orapplications that can be supported at petascale and
disk and in memory) and the full network bandwidtfuture exascale levels.

of commodity networks (e.g. gigabit Ethernet) as

well as proprietary and more exotic networkfCknowledgements

(Torus, Tree, and Infiniband). This work was supported in part by the NASA Ames
We argue that data locality is critical to th@Research  Center GSRP  Grant  Number
successful and efficient use of large distributeddNAOGCB89H and by the Office of Advanced
systems for data-intensive applications, where tiSgientific Computing Research, Office of Science,
threshold of what constitutes a data-intensive.S. Dept. of Energy, under Contract DE-AC02-
application is lowered every year as the performang8CH11357. This research was also supported in
gap between processing power and storagart by the National Science Foundation through
performance widens. Large scale data managemestaGrid resources provided by UC/ANL.

is the next major road block that must be addressed
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